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Chapter 1

Introduction

An n-dimensional manifold is a Th-separable metric topological space M such that every point
x € M has a neighbourhood U, C M homeomorphic to the n-dimensional Euclidean space E™.
The homeomorphism problem for compact, connected n-manifolds is due to Henri Poincaré [30] and
it belongs among the most studied problems since the beginnings of 20-th century.

For manifolds of dimensions one and two is the classification well-known :

There is (up to homeomorphism) a unique compact connected 1-dimensional manifold - a circle
given by the set of solutions of the equation 22 + 4% = 1, [z, y] € E%.

There are (up to homeomorphism) two infinite classes of compact connected 2-dimensional
manifolds (surfaces). Every 2-manifold is uniquely determined by its orientability and Euler
characteristics.

The Classification theorem for dimension two is included in basic courses of algebraic topology [18, 23]
or discrete mathematics. Its proof is based on ”cut-and-glue” operations and the result is nicely
expressed by the well-known Euler-Poincaré equation:

2 —2g, S is orientable,
v—e+ f=yx, where y =
2—g, S is non-orientable.

where v, e, f are the respective numbers of vertices, edges and faces of a cellular decomposition of a
surface S with Euler characteristic x. The number g (§) is called the genus (non-orientable genus)
of S. It follows that the Euler characteristic can be obtained from any cellular decomposition of S
in an easy way. To determine the orientability of S it is sufficient to decide whether the dual of the
barycentric subdivision of a 2-cell decomposition of S is bipartite or not.

An extension of the classification to higher dimensions was the problem, which has naturally
arisen in the beginnings of modern topology. Finally, it transpired that for dimensions n higher than
three the classification of n-manifolds by means of finite number of invariants and finite number of
identities relating them cannot be achieved due to a theorem of Markov [23, p. 1]. The classification
problem for the dimension n = 3 remains open till nowadays.

In what follows we shall restrict our considerations to orientable compact connected 3-manifolds
exclusively. In further explanation we often omit the adjectives compact connected orientable. A
particular, but fundamental instance of classification problem was formulated by Henri Poincaré in
1904 [30] in the following form:



10 3-manifolds of Heegaard genus at most two

”Is there a 3-manifold with trivial homology group, which is non-homeomorphic to the
3-dimensional sphere?”

Early after the formulation of the previous problem Poincaré himself found some (counter-) examples.
One of the Poincaré examples, namely the Poincaré dodecahedral space, will appear in our analysis
as well (for details see Section 4.7.1). Another instance of a non-trivial ”homology sphere” appears
in the celebrated example of Montesinos [4] showing that a 3-manifold can be defined as a branched
cover over S in two essentially different ways, i.e. the respective knots differ essentially. The
existence of counter-examples led Poincaré to transform the previous problem to the following form:

”Is every simply-connected 3-manifold (with trivial fundamental group), homeomorphic
to the 3-dimensional sphere?”

This problem was attacked during all the 20-th century using a lot of different methods. Studies
around the Poincaré conjecture contributed to many branches of mathematics such as the theory
of knots and Riemannian manifolds. Note that the Poincaré problem belongs among so-called
”Millennium problems” claimed by Clay Mathematical Institute.

The most promising approach to the classification problem is related with a more general ques-
tion:

How much the structure of a 3-manifold is determined by its fundamental group?

Generally, the structure of a 3-manifold cannot be deduced from its fundamental group. Lens spaces

L(p.q), p a prime and 1 < ¢ < [E], form a family of mutually distinct 3-manifolds with the cyclic

fundamental group Z,, of order p. The idea to attack the classification can be explained in two steps:

1. Find a proper family of (binary) operations such that each 3-manifold has with respect to the
chosen operations a unique decomposition into decomposable 3-manifolds.

2. Assuming that the Poincaré problem is solved proving that the only simply-connected 3-
manifold is 2, we represent an indecomposable 3-manifold M as a quotient of either S3 or of
E3 by its fundamental group 71 (M).

As concerns part one, it turned out* that the connected sum and the Johanson-Jaco-Shalen torus
decomposition is a complete set of useful operations. A monograph by Hempel [19] is an useful source
of information about fundamental groups of 3-manifolds and their connected sums. A recent work of
Grigori Perelman gives us a hope that the assertion of Poincaré can be proved in the affirmative as a
particular instance of the celebrated Thurston’s Geometrisation Conjecture. Assuming the Poincaré
Conjecture is true, the classification of prime 3-manifolds transfers to a problem to describe different
free actions of certain groups acting on S® or E2, respectively. A 3-manifold is then expressed as
a quotient of the universal cover S? or E? by he fundamental group. The appropriate groups and
actions on S® (the elliptic case), were classified by Milnor [26]. An effective way to describe the
actions of fundamental groups on E? consists in endowing E® with an appropriate geometry and
interpreting the fundamental group as a group of isometries with respect to the chosen geometry.
Thurston conjectured that altogether it is sufficient to use 8 geometries, seven of them associated
with E® and the spherical geometry attached to S3. Perelman’s attempt to prove the Poincaré
Conjecture, as a first step to confirm the Thuston’s Geometrisation Conjecture, is under detailed
discussion of hundreds of mathematicians around the world and it looks to be complete for this time.
The homeomorphism problem was studied in thousands of papers and books written by hundreds

*it took a long time
fMay 2005
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of authors, so it is impossible to complete the survey on the problem including all the aspects. In
the remaining part of the introduction we focus on one particular technique related to the results
proved in this thesis. The results coming from the classical approach to the classification problem
used in this thesis are nicely surveyed in the seminar talk of Vivien Easson [9] (see Appendix). More
information on geometrisation of 3-manifolds can be found in Thurston’s book [33].

Our method is based on a work of Mario Pezzana, who developed the theory of crystallisations [29]
in early 70-th of the 20-th century. The concept of Pezzana’s theory extends to any dimension. One
of the advantages of the Pezzana’s approach is a possibility to generalise some invariants defined for 3-
manifolds (such as Heegaard genus, for instance) to manifolds of any dimension [2]. A crystallisation
is a certain combinatorial representation of a given 3-manifold. Since every orientable 3-manifold M
admits a triangulation [28], M can be replaced by its underlying simplicial complex S(M). Take the
first barycentric subdivision of S(M) and construct its dual graph I'(M). Since each tetrahedron
of S(M) has four triangles, I'(M) is a 4-valent graph. It is well-known that M is orientable if and
only if I'(M) is bipartite. Moreover, there is an induced edge-colouring of I'(M) by four colours. A
converse statement was investigated by Pezzana who proved [29] that a bipartite 4-valent 4-edge-
coloured graph I represents an orientable 3-manifold if and only if the subgraph H of I" induced by a
subset of edges coloured by any triple of colours is planar. If H is planar and connected for any triple
of colours, I is called a crystallisation. Since a 3-manifold is fully described by its crystallisation,
the homeomorphism problem transfers to a problem on crystallisations (see Chapter 3 for details).
This way the dimension three is reduced to dimension one and topological objects are replaced
by combinatorial ones. Unfortunately, the same 3-manifold can be represented by infinitely many
crystallisations. As we shall see later, the combinatorial formulation of the homeomorphism problem
remains non-trivial. Ferri and Gagliardi proved [12] that the homeomorphism relation between 3-
manifolds is in the Pezzana’s theory reflected by the dipole-move equivalence on bipartite 4-valent
4-edge-coloured graphs.

Dipole-moves are roughly said 3-dimensional equivalents of ” cut-and-glue” operations well-known
from the dimension two. Using a sequence of dipole-moves one can transform a crystallisation
I' = T'(M) representing a manifold M to another one, say I, Ferri and Gagliardi’s theorem states
that one can construct a finite sequence of dipole-moves transforming I" onto I'V if and only if the
represented 3-manifolds are homeomorphic. In spite of generality of dipole-moves, these operations
cannot be used for classification of 3-manifolds, in a straight way, due to the complexity of the
dipole-move relation. The following decision problem arises:

Decide whether two bipartite 4-valent 4-edge-coloured connected graphs I, I are, or are
not, dipole-move equivalent.

Since no bound on the number of dipole-moves transforming I" onto I' in terms of (I",I”) is known
it is not clear whether the above problem is an algorithmically solvable problem.

Every 3-manifold yields a ”canonical form” of a crystallisation which can be described by an
ordered 2(g + 1)-tuple of integers, called an admissible 2(g + 1)-tuple. The integer g bounds the Hee-
gaard genus of the represented 3-manifold. The above result of Casali and Grasseli [7] is our entry
point in the topic. Colour-preserving graph isomorphisms induce an equivalence relation on the set
of admissible 2(g+1)-tuples called H-equivalence [6]. The H-equivalence divides the set of admissible
2(g+ 1)-tuples into infinitely many equivalence classes — orbits of the action of the group H of trans-
formations of admissible 2(g+ 1)-tuples. Clearly, the H-equivalence is a refinement of the restriction
of the dipole-move equivalence on the set of graphs associated with admissible 2(g + 1)-tuples. For
g = 2, Graselli, Mulazzani and Nedela introduced in [17] a special operation ¢ on admissible 6-tuples
giving rise to an equivalence relation on the set of admissible 6-tuples. The operation ¢ corresponds
to a special sequence of dipole-moves which transforms the crystallisation represented by an ad-
missible 6-tuple to another one, non-equivalent in the sense of H-equivalence. Orbits of the group
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G = (H, o) define a new equivalence relation, called G-equivalence. Two G-equivalent 6-tuples are
dipole move equivalent, hence G-equivalence can be viewed as an approximation of the dipole-move
equivalence on the set of admissible 6-tuples.

Establishing the combinatorial representation of 3-manifolds and equivalences between crystalli-
sations a possibility to automatise the classification process of 3-manifolds arises. Recall that 3-
manifolds up to genus two are coded by admissible 6-tuples of integers. Further, the sum of first
three items of an admissible 6-tuple is exactly half of number of vertices of respective crystallisation.
This number is called the complexity of an admissible 6-tuple. One can generate a list of admissible
6-tuples up to given complexity to describe 3-manifolds coded by ”small” crystallisations. A first
attempt to complete a catalogue of admissible 6-tuples is due to Casali [6]. Maximal complexity of
6-tuples considered in this catalogue was 21. This catalogue contains representatives of equivalence
classes of H-equivalence. A disadvantage of the catalogue of M. R. Casali is that the same 3-manifold
is represented repeatedly. Our aim is to derive a catalogue of representatives of 3-manifolds with
Heegaard genus two distinguished up to homeomorphism. An explicit formulation of the problem
reads as follows.

Derive a catalogue of 3-manifolds with Heegaard genus two, distinguished up to homeo-
morphism, represented by admissible 6-tuples of complexity at most 21.

First step is to study the action of the group G on the set of admissible 6-tuples. We show that
replacing H-equivalence by G-equivalence the Casali’s catalogue of representatives can be consider-
ably reduced. Moreover, we show that the problem to recognise whether two admissible 6-tuples of
integers are G-equivalent can be effectively solved by a computer. As a result a catalogue of repre-
sentatives of G-classes up to complexity 21, similar to Casali’s, is completed. This way a reduction
of the catalogue of Casali [6] with respect to G-equivalence is obtained. The above mentioned results
are included in Chapter 3 of our thesis.

Unfortunately, the catalogue of representatives of G-classes of admissible 6-tuples may contain
(and actually contains) 6-tuples representing the same 3-manifolds. In order to get a catalogue of
representatives with respect to dipole-move equivalence we study (in Chapter 4) some invariants
of crystallisations represented by admissible 6-tuples. The most important such an invariant is
the fundamental group of the represented 3-manifold. Crystallisation theory gives us an elegant
algorithm for deriving a fundamental group from a crystallisation. This algorithm is due to Carlo
Gagliardi [14]. One can examine any crystallisation using Gagliardi’s algorithm and gather the
presentation of certain finitely presented group which is isomorphic to the fundamental group 1 (M)
of the represented 3-manifold. Further, we use a well-known result stating that the first homology
group Hi(M) is an abelianisation of fundamental group of a 3-manifold m (M). Hence we derive
first homology groups for every 6-tuple in the catalogue. Obtaining the homology groups we divide
the 6-tuples into the homology classes. Further step is to examine each homology class to prove
(or disprove) mutual isomorphisms between the fundamental groups associated with the 6-tuples.
Hence we get isomorphism classes of fundamental groups of represented 3-manifolds up to genus
two. In order to identify homeomorphism classes of represented 3-manifolds we have to determine
the classes of dipole-move equivalence on crystallisations with the same fundamental groups. In few
cases when needed it was done by Carlo Gagliardi and Paola Bandieri by using the software called
DUKE developed at Modena University. Final results give us some evidence of a conjecture states
that prime 3-manifolds with Heegaard genus two are determined by their fundamental groups. The
main goal of this thesis is the following classification result which in a condensed form reads as
follows.

Theorem. There are 78 prime 3-manifolds of genus two of complexity < 21. Among them,
there are 39 elliptic 3-manifolds, 4 FEuclidean 3-manifolds and 35 other 3-manifolds with infinite
fundamental groups.
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1.1 Content of the thesis

Main aim of this thesis is to study crystallisations representing 3-manifolds with Heegaard genus at
most two. In order to attack the classification problem for this family of 3-manifolds we will deal
with the following particular subproblems.

P1: Decide whether two admissible 6-tuples f1 and fo are G-equivalent. Complete the catalogue of
representatives of G-equivalence classes up to complexity 21.

P2: Determine the isomorphism classes of fundamental groups of 3-manifolds in the catalogue of
representatives of G-classes.

P3: Show that two 6-tuples from the catalogue with the same associated fundamental group are
dipole-move equivalent.

P4: Interpret the obtained results in crystallisations.

Complete solution of Problem P1 can be found in our paper [21]. This paper forms a base of
Chapter 3, ”Combinatorial approach”. Our analysis of G-equivalence results in an effective algorithm
solving this problem. The algorithm is used to derive the catalogue of minimal representatives of G-
classes up to complexity 21. Moreover, the classification of crystallisations of regular genus at most
one is derived. This way a new, combinatorial proof of the well-known classification of 3-manifolds
with Heegaard genus at most one can be obtained. A classification of 3-manifolds of genus two is in
general not known. The main object of our study are crystallisations of 3-manifolds of genus two.

In the process of creation of the starting catalogue of admissible 6-tuples we also derive the
relators of fundamental groups given by the respective 6-tuples. In Chapter 4 ” Analysis of isomor-
phism classes of fundamental groups” we take the reduced catalogue of G-representatives obtained
in the previous step and continue by the analysis of the fundamental groups. We first derive the
respective homology groups and divide the list of admissible 6-tuples into the homology classes. The
cardinality of each homology class is relatively small. In what follows we use the software GAP [16]
to determine the isomorphism classes of fundamental groups. Isomorphism classes of finite funda-
mental groups are determined with some exceptions in this way completely. In the case of infinite
fundamental groups we first compute some invariants such as low index subgroups. For the couples
of presentations which cannot be distinguished by the invariants we determine isomorphisms ad hoc
by finding respective images of generators and checking that the relators are preserved. This way
we solve Problem P2.

The statement of the main theorem follows from the combination of results stated in Chapters 3
and 4. The interpretation of our results heavily depends on classical results on 3-manifolds presented
in Chapter 2, ”Preliminaries”. Using these results and with a help from software DUKE we can
successfully solve Problem P3. The classification may continue by examining geometries of the
3-manifolds in the sense of Thurston solving Problem P4. Some hints together with a discussion on
open problems can be found in Chapter 5, ” Concluding remarks”. Developed software is described
in Chapter 6, ”Software notes”. All results including derived catalogues of 6-tuples, catalogues of
the associated fundamental groups fills up the Appendix. Moreover, a hard-copy of the seminar talk
by Vivien Easson to give the reader more information on geometrisation of 3-manifolds with genus
two is included.






Chapter 2

Preliminaries

In this chapter we introduce some classical results of topology of 3-manifolds. These results stands
as a base of all of our following considerations. As we shall see, we mostly will not apply them in
a straight way, but the completion of results of the thesis is not possible without using a content of
this chapter. Besides basic definitions such as the manifold, simplicial complex etc., we also sketch
some deeper results such as a geometrisation.

We will denote n-dimensional Euclidean space by E™, the unit ball {x € E™ : ||z|| < 1} by B™,
and the unit sphere {x € E™ : ||z|| = 1} by S"~!. We will call a space homeomorphic to B™ (S"~1)
a n-cell ((n — 1)-sphere).

Definition 1 [19] A topological 3-manifold is a separable metric space each of whose points has an
open neighbourhood homeomorphic to E3.

In what follows all the considered 3-manifolds will, unless otherwise stated, assumed to be com-
pact, connected and orientable. Representing 3-manifolds via simplicial complexes is a classical
method used in algebraic topology. Every 3-manifold can be triangulated [28]. Let us note that
a particular triangulation need not to be "nice” in the sense of ”gluing homeomorphisms”. In our
case we will study simplicial complexes which grows from 3-manifolds in a natural way and gluing
homeomorphisms are uniformised.

Simplicial complex. We will view a simplicial complex as a locally finite collection K of closed
simplexes in E3 satisfying

i) if 0 € K and 7 is a sub-simplex of o, then 7 € K|
ii) if 0,7 € K, then 0 N7 is a face of both o and of 7.

Every compact connected n-manifold, n < 3, can be expressed as a simplicial complex containing
a finite set of simplices of dimension n [28]. For instance, a compact connected surface can be
triangulated. However, we can form a triangulation of a surface by infinitely many ways. For
example, we can choose a point in a triangle of a given triangulation, connect it with the vertices
of that triangle and form a new triangulation of the same surface. A general problem is to decide,
whether two different simplicial complexes represent the same n-manifold. A crystallisation theory
gives us a tool to distinguish the representing simplicial complexes in the set of all possible cases.
Fundamental group. An important invariant of a topological space X is the fundamental group
m1(X) of X. Elements of this group are homotopy classes of closed curves based at a point zo. The

15
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product of two classes [f], [g] is given by [f] o [g] = [fg]. It is known that in a piecewise-linear space
the fundamental group does not depend on the choice of the base point. For more details see [23,
Chap. 2].
Free group. Let F' be a group, X be a nonempty set, and o : X — F a function. Then (F, o) is said
to be free on X if to each function a from X to a group G there corresponds a unique homomorphism
B : F — G such that a = o3 [31]. We talk about the set X as about the set of generators and about
the group F as about free group. The cardinality | X| we will call the rank of free group F. In what
follows, we will deal only with groups with finite rank.
Free presentation and finitely presented group. Every group is an image of a free group. The
epimorphism 7 of a free group F to G is called a free presentation of the group G. Elements of
the kernel of this epimorphism Ker m &2 R < F' are called the relators of the presentation. Groups
given by finite set of generators and by finite set of relators are called finitely presented groups. All
considered groups, we deal with, are finitely presented.
Free product of groups. Let there be given a nonempty set of groups {G;; | € A}. By a
free product of the G; we mean a group G and a collection of homomorphisms ¢; : G — G with
the following mapping property. Given a set of homomorphisms ¢; : G; — H, there is unique
homomorphism ¢ : G — H such that ¢;¢ = ¢; [31].
Homology group. A commutator [a,b] of elements a,b of the group G is an element [a,b] =
aba~'b~1. The derived subgroup G’ < G generated by all commutators is known to be normal. The
factor G/G’ is called an abelianisation of the group G. Abelianisation of the fundamental group
m1(M) of a 3-manifold M is called the homology group Hi(M).
Connected sum. The connected sum of two 3-manifolds M and N, denoted M#N, is formed by
cutting contractible parts D; C M and Dy C A from both manifolds and gluing them along the
boundaries dD; C M and 8Dy C N together following a homeomorphism dD; — 9D [23].
Connected sum is a well-defined associative and commutative operation in the category of ori-
ented 3-manifolds and orientation preserving homeomorphisms [19, p. 24].

Theorem 2.1 (Van Kampen) [23, p. 91] [19, p. 25] Let MN be 3-manifolds. Let X = MUN .
If M NN is simply connected, then w1 (X) is the free product of the groups w1 (M) and m (N) with
respect to homomorphisms 1 : m (M) — 71 (X) and s : 1 (N) — m1(X) induced by inclusions

The above theorem deals with a particular case of a more general statement establishing that the
fundamental group of a connected sum of two topological spaces is a free product of fundamental

groups of the factors. Generally the reverse implication is not true. However, in the particular case
of compact, connected 3-manifolds we have the following theorem.

Theorem 2.2 (Grushko) [19, p. 66] Let M be a compact, connected 3-manifold. If m (M) =
G1 * Gy then M = M # My where T (M;) 2 G;, i =1,2.

Definition 2 [19, p. 27] A 3-manifold M is a prime if M = My1#Ms implies one of M1, Ms to
be the S3.

Definition 3 [19, p. 28] A 3-manifold is irreducible if each S? in M bounds a 3-cell in M.

Irreducible 3-manifolds are prime. As a partial converse we have the following lemma.

Lemma 2.3 [19, p. 28] The only prime reducible 3-manifold is S x S2.
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Theorem 2.4 (Milnor) [19, p. 31,p. 85][27] Each compact, connected and orientable 3-manifold
M can be expressed as a connected sum M = My#Mo# ... #M,, of finite number of prime factors.
The decomposition is unique up to reordering of factors in the category of oriented 3-manifolds.

One of the difficulties in study of the structure of prime 3-manifolds is a possibility of exis-
tence of non-trivial simply-connected prime manifolds. Poincaré asserted that a manifold with
trivial homology (group) is simply connected and therefore a sphere: ”. .. est simplement c’est-a dire
homedémorphe & ’hypersphere” [30]. Shortly thereafter he discovered an example of a non-simply
connected homology 3-sphere*. However the following is still unsettled.

Conjecture 2.5 (Poincaré Conjecture) [19, p. 26] Each closed, connected, simply connected
3-manifold is homeomorphic to S3.

Using the term ”homotopy n-sphere” for an n-manifold homotopy equivalent to S™, we have

Theorem 2.6 [19, p. 26] A 3-manifold M is a homotopy 3-sphere if and only if M is closed,
connected, simply connected 3-manifold.

As we shall see for 3-manifolds up to genus two the Poincaré Conjecture holds.

Definition 4 (Heegaard) [19, p. 15] A 3-manifold M with boundary which contains a collection
{D1,D3,...,Dy} of pairwise disjoint, properly embedded 2-cells such that the result of cutting M
along | D; is a 3-cell is called a cube with n-handles, or alternatively, handlebody.

By Van Kampen’s theorem w1 (M) is a free group of rank n.

A Heegaard splitting of a closed, connected and orientable 3-manifold M is a pair (V7, V3) where
V; is a cube with handles (i=1,2), M = V4 U V5, and V3 NV, = 9V; = 9Va.

We note that the boundary of a cube with n-handles, V', is compact, connected surface of Euler
characteristic 2 — 2n which is orientable if and only if V' is orientable. Thus for a Heegaard splitting
(V1,Va) of a 3-manifold M, V; and V4 have the same number of handles and both are orientable
since M is orientable. [19, p. 17]

Theorem 2.7 [19, p. 17] Each 3-manifold M has a Heegaard Splitting.

Definition 5 Heegaard genus of M is minimum of genera of Heegaard splittings of M, where the
minimum is taken through all Heegaard splittings of M.

Proposition 2.8 [9] If a 3-manifold has a splitting of genus zero, it is homeomorphic to S3.

A lens space L(p, q) is a 3-manifold formed as a quotient of S? (considered as the unit sphere of C2)
by the cyclic group Z, of isometries generated by (21, 22) + (€2™/Pzy, €?™4/P 2,) for coprime integers
p and g. The splitting of genus one has Heegaard surface |21]* = |22|? = 3 and divides L(p, ¢) into
two solid tori given by |21|> < 1 and |21|> > 1 [9]. Let us remark that lens spaces are irreducible
3-manifolds [19, p. 28].

The genus one splitting of S' x S? is even easier to see — take two solid tori and glue them by the
identity map along their boundaries reversing the orientation of one of the handlebodies. Analysis
of all possible torus gluing maps shows that the manifolds listed are the only ones with genus one
splittings [9][19, pp. 20 — 23].

*see subsection Chapter 4, subsection ”Homology class H; = 1” for some counterexamples
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Proposition 2.9 (Hempel) [9//19, pp. 20 — 23] If 3-manifold M has a splitting of genus one, it
is either homeomorphic to a lens space or to ST x S2.

Generally, to understand the structure of 3-manifolds the following approach was used; using cer-
tain set of operations each 3-manifold is decomposed into prime 3-manifolds with respect to these
operations. It happened that two operations turned to be useful. First is the connected sum, the
other one is the so called Johanson-Jaco-Shalen decomposition [33].

__Let us consider a prime 3-manifold M with respect to these two operations. Clearly M =~
M /71 (M), where M is the universal cover. A goal is that the action of the fundamental group on
the universal cover have a geometric meaning. Thurston [33] discovered that there are eight types
of geometries, including the well-known elliptic on S 3 and Euclidean on E3, which can be attached
with M. The action of the fundamental group 7(M) on M is interpreted as the action of a group
of ”geometric transformations”. In this case M is said to be geometric. A 3-manifold is said to
have a geometric decomposition if it decomposes into prime 3-manifolds M, such that each M; is
geometric.

A celebrated Thurston’s conjecture reads as follows.

Conjecture 2.10 (Thurston) Fuvery compact connected orientable 3-manifold has a geometric de-
composition.

More information on the geometrisation can be found in Appendix written by Vivien Easson and
in the book of William P. Thurston [33].

As concerns genus two 3-manifolds, their structure is more complicated compared to the 3-
manifolds of genus at most one. Every 3-manifold up to Heegaard genus two admits so-called
Weierstrass involution. Combining this fact with Thurston’s Symmetry Theorem [33] one can prove
the following two statements.

Theorem 2.11 [9] Every irreducible 3-manifold with Heegaard genus two is geometrisable.

Theorem 2.12 [9] Any reducible manifold M with Heegaard splitting of genus two is expressible
as a connected sum of two 3-manifolds with Heegaard splittings of genus one. These are lens spaces
or St x §2

The above two theorems imply that a genus two 3-manifold has a geometric decomposition is sense
of Thurston. Another consequence reads as follows.

Theorem 2.13 Let M be a compact connected orientable 3-manifold of genus two. Let the funda-
mental group of M be finite. Then the universal cover of M is the Poincaré sphere S3.

Proof. Assume, on the contrary, that the universal cover M is not S3 but it is simple connected. By
its definition it is a counterexample to the Poincaré Conjecture. By Theorem 2.11 this is impossible.
O

Note that Milnor [26] described all the groups which acts on S? freely.

Corrolary 2.14 Let M be a compact, connected, orientable 3-manifold of genus at most two. Let
M has finite cyclic fundamental group of order p. Then M is homeomorphic to a lens space L(p, q),
for some g € N.
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Theorems 2.12, 2.13 and 2.14 are of crucial importance. They can be used to simplify the most of
processes we will do in creating the catalogue of representatives of 3-manifolds. It follows that we
can immediately exclude all the 6-tuples admitting fundamental groups which are cyclic or which
are free products of cyclic groups. Only prime 3-manifolds with Heegaard genus two seems to be
really interesting.






Chapter 3

Combinatorial approach

In this chapter we will study combinatorial methods to attack the homeomorphism problem for 3-
manifolds up to genus two. A theorem of Pezzana [29] implies that every closed connected 3-manifold
can be represented by a particular 4-edge-coloured graph called a crystallisation. The concept of
crystallisations plays a crucial role in our next considerations.

There is a well defined equivalence relation on the set of crystallisations representing 3-manifolds
called dipole-move equivalence [12]. This equivalence allows us to decide which crystallisations
represent the same 3-manifold. Unfortunately, the straight use of dipole-moves to solve the above
homeomorphism problem seems to be intractable. In fact, no limit for the number of dipole-moves
needed to decide whether two crystallisations determine the same compact connected 3-manifold is
known.

Let M be a 3-manifold. It is well known [2, 29] that a simplicial complex S(M) representing M
can be given by a crystallisation I'(M). Vertices of I'(M) represent simplices of S(M) of dimension
3 and edges of I'(M) represent ”gluing” of maximal simplexes of the complex S(M) in subsimplices
of dimension 2. Given crystallisation (4-valent 4-edge-coloured graph) I'(M) can be embedded into
an orientable surface. The regular genus of M is the minimal genus of an orientable surface into
which I'(M) embeds in a particular way described in the next section, where the minimum is taken
through all representations I'(M) of M. It is proved that the regular genus of M bounds the
Heegaard genus of the 3-manifold M [15].

In this chapter we will also classify the crystallisations representing 3-manifolds with Heegaard
genus zero and one. The 3-manifolds of Heegaard genus two becomes the first interesting class be-
cause a classification is not known for this class. Following [7] we represent a 3-manifold of genus at
most two as a vector of integers of length six and consider certain equivalence relations defined on
6-tuples and preserving the associated 3-manifold of genus two. The 6-tuples code some particular
crystallisations naturally embedded into a surface of genus two. The first considered equivalence on
the set of 6-tuples is introduced in [6] and it is called H-equivalence. This equivalence is induced by
colour-preserving graph isomorphisms between the respective crystallisations. In [17] other equiv-
alence on the set of 6-tuples is defined. This equivalence is called G-equivalence and it extends
the H-equivalence. If two 6-tuples f and g are G-equivalent then the respective crystallisations are
dipole-move equivalent. Thus if f and g are G-equivalent 6-tuples then they represent homeomor-
phic 3-manifolds of genus at most two*. Hence the G-equivalence provides an approximation of
the dipole-move equivalence. We show that there exists a quick algorithm to decide whether two

*at most two, as we shall see

21
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6-tuples are G-equivalent. This gives us a possibility to create a catalogue of G-representatives of
G-classes of crystallisation up to given number of vertices. In what follows we first summarise some
needed results, prove a classification of 3-manifolds with Heegaard genus at most one and study the
properties of G-equivalence proving that simple algorithm solving it exists. This algorithm is used
to derive a list of minimal representatives of G-classes which will be used in further analysis.

3.1 From a 3-manifold to a 4-edge-coloured graph

Each orientable 3-manifold M can be represented by a bipartite 4-edge-coloured graph [2]. Let T
be any simplicial triangulation of M and T’ be its first barycentric subdivision. Each vertex @,
which is the barycentre of the simplex w of T is labelled by the dimension of w. Take the dual
graph I of 77 and if uv is an edge and {3, j, k} are the colours of respective triangle in T" use the
colour complementary to {i,7,k} to colour the edge uv. The labelling of vertices of T' induces a
decomposition of the tetrahedrons of 7" into two classes distinguished by orientation, where adjacent
tetrahedrons belong to different classes. Thus I is bipartite. The dual graph I' of T”, together with
the edge-colouring v, is a 4-edge-coloured graph, representing T'. Conversely, given bipartite 4-edge-
coloured graph one can construct an associated 3-dimensional complex 7. However, in general, T'
need not to be homeomorphic to a 3-manifold.

Let us remark that the above representation of a 3-manifold may not be optimal in sense of
the size. In fact, many of the 3-manifolds considered in this thesis can be represented by a much
smaller simplicial complexes [5]. On the other hand, the representation (by means of bipartite 4-
edge-coloured graphs) we are going to use gives us an insight into the structure of a represented
3-manifold. Moreover, as we shall see later, using the representation by means of bipartite 4-edge-
coloured graphs the homeomorphism relation on 3-manifolds can be described in a combinatorial way
(see Theorem 3.2). Representation by general simplicial complexes yields no such a nice equivalence
relation.

Definition 6 (n-edge-coloured graph) Let I' = {V('), E(I')} be a bipartite n-valent graph and
let there exist a mapping v : E(T) — A,, 1 < n < 4 such that for all pairs of incident edges
frg € ET) : v(f) # v(g). This mapping is called a graph colouring and the graph T' a n-edge-
coloured graph.

Residual graph. Given 4-edge-coloured graph I, the k-edge coloured graph (0 < k < 4) is called a
residual graph I'p, where B C Ay. We get the residual I'z from I'a, by deleting the edges coloured
by colours from B. We often use the symbol 'z for residual graph created by deleting the edges
coloured by the colour c.

Remark. We use the symbol I' instead of exact description I'a, for 4-edge-coloured graphs. In what
follows we oftenly replace ”4-edge-coloured graph” by ”4-coloured graph”.

Colour-compatible embedding. Let I' be a bipartite 4-edge-coloured graph. Since the colouring
is regular a factor induced by two colours is a disjoint union of bicoloured cycles. There are six such
bicoloured 2-factors. We may form a 2-cell embedding of I' by taking a subset consisting of four
bicoloured 2-factors and gluing a 2-cell to each bicoloured cycle in each chosen bicoloured 2-factor.
The obtained embedding of I will be called colour-compatible embedding. Given 4-edge-coloured
graph I'; there are three colour-compatible embeddings of I', each one is by definition orientable.

Regular genus. Given 4-edge-coloured graph I'" the minimum of the genera of colour-compatible
embeddings of T' will be called a reqular genus g(T') of T. Regular genus of a 3-manifold M is
the minimum of ¢g(T"), where the minimum is taken through all bipartite 4-edge-coloured graphs T’
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representing M. Shortly we talk about the genus of M. It is known that regular genus of M is
equal to the Heegaard genus of M [15].
Dipole-move. Let I' be a 4-coloured graph and let © is a subgraph of I' consisting of vertices
x,y joined by h edges (1 < h < 3) coloured by colours ¢1,...,¢,. If x and y are in two different
components of graph I'a, (., ... ¢,y induced by the set of complementary colours Ay — {c1,...,cn}
then the subgraph © will be called a dipole of type h.

There is a well defined operator over the set of 4-coloured graphs [12] called dipole-move. Note
that a dipole-move can be defined for (n+ 1)-coloured, connected and bipartite graphs (n-manifolds)
generally.

Construction 3.1 (Elementary dipole-move) If © is a dipole of type h in 'a, coloured by
colours {cy,...,cn} we define a dipole-move as follows (see Fig. 3.1):

a) Cutting of ©

e remove edges and vertices of ©

e glue "hanging” edges of graph I'a, of the same colour

b) Adding of © as an inverse to cutting

CC1 cc2 CcC1 cc2
\\ //
' ! o -
“ %
X v,/ \
e
A AN I
' e o7
I cc1 . cc2 1 ccl cc2
Ny
X, =< Y | -
ool l——o-i-e | Ormfmrmimrmim e -
|
\ ! \ ! \ 1 \ 1
v 1CCl \ 1cec2 « 1CCl v 1 Ccc2
’ N N N

Figure 3.1: Dipole-moves

Main result of [12] states that graphs I" and I'" represent isomorphic 3-manifolds if and only if there
is a finite sequence of dipole-moves transforming I'" to V. Hence the "homeomorphism problem”
reduces to the problem to decide whether two 4-edge-coloured graphs are ” dipole-move equivalent”.

Theorem 3.2 (Ferri and Gagliardi) [12] Two 4-edge-coloured graphs T' and T represent the
same 3-manifold if and only if T’ transforms into T by applying a finite sequence of dipole-moves.

Definition 7 Let I and I be J-edge-coloured graphs. We say that I' and I are dipole-move equiv-
alent if T transforms into TV by a finite sequence of dipole-moves.

Crystallisations. As already mentioned, not all 4-coloured bipartite graphs represent compact,
connected and orientable 3-manifolds. A 4-coloured graph I is said to be contracted if for each colour
¢ € Ay the residual graph I'; is connected. Contracted 4-coloured graphs are called crystallisations.
The following characterisation theorem was proved by Pezzana.
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Theorem 3.3 (Pezzana) [11] Let T be a crystallisation. Then T represents a compact, connected
and orientable 3-manifold if and only if the residual graph Iz with the induced colouration admits a
colour-compatible embedding into the 2-sphere S? for each c € Ay.

3.2 Crystallisations of regular genus at most one

Lemma 3.4 Let I' be a 4-valent bipartite multi-graph embedded into a surface of Euler character-
istic x. Let f; be the number of faces of length i. Then

2fy =Y (i—4)fi +4x,
i>4
where v is the number of vertices, e is the number of edges and [ is the number of faces of I'.
Proof. By Euler-Poincaré theorem we have
v—e+ f=x.

Since T' is 4-valent e = 2v, moreover 2e = ). if;,i € N. Inserting these equations we get
Af =3 ifi = 4x
Using f =), fi we obtain

DU=fi=> (A=ifi+ > (4—i)f; =4x.

% <4 i>4

Since I' is bipartite
2fs+ Y (4—i)fi = 4x
i>4

and we are done. O

Corrolary 3.5 If x =2 then fo > 0. If x = 0 then either every face is 4-gonal, or fo > 0.

Definition 8 Lett: " — S be a colour-compatible embedding of a crystallisation I' into a surface S.
The embedding ¢ is reduced if and only if I is a crystallisation and no 2-gonal face can be cancelled
using dipole-move operation.

Proposition 3.6 FEvery bipartite 4-edge-coloured graph of regular genus 0 is dipole-move equivalent
to the 4-dipole.

Proof. Let i : T — S° be a colour-compatible embedding. We may assume, that I' is reduced.
If it is not, we can reduce it cutting digonal faces preserving the planarity of the embedding. By
Corollary 3.5 i contains a face F' of length two. Denote the vertices incident with F' by u, v and
assume its edges are coloured by 0,1. There exists a 2-3 face, say O, incident with vertex u. Since
I" is reduced, the face O is incident with vertex v, as well. Moreover, there is a 0-3 face B, which
is incident with F' through the edge coloured by 0. Denote by e and g the edges coloured by 3
incident with u and v, respectively, see Figure 3.2. Let e # g. Then BUO U {e, g} is a separating
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Figure 3.2: Colour compatible embedding of 4-valent graph into S°

open cylinder. It follows, that T\ {e, g} is a disconnected graph. Hence T is not contracted, a
contradiction. Finally, let e = g. Then we have 3-dipole with edges coloured by 1-0-3. Since I is
reduced, there is a 2-edge joining u and v. It follows, that I' is the 4-dipole. O

By a shifted toroidal rectangular grid of type (k X n;m) we mean a graph arising from a k X n
rectangular grid by identifying the opposite horizontal an vertical sides. The vertical sides are
identified with shift m > 0. Figure 3.3 shows the shifted (toroidal) rectangular grid of type (2x10;4).
By its definition every shifted rectangular grid forms a toroidal map of type (4,4). Altshuler and in
a more general framework Thomassen have proved the converse implication [1, 32].

Proposition 3.7 (Altshuler [1]) FEvery toroidal map of type (4,4) is given by a shifted rectangular
grid of some type.

Proposition 3.8 A crystallisation of reqular genus one is isomorphic either to a shifted rectangular
grid of type (2 x n;m), for some m,n € N and (m,n) = 2 or it is dipole-move equivalent to one of
the two exceptional graphs depicted on Fig. 3.9.

Proof. Let I' — T be a colour-compatible embedding of a bipartite 4-edge-coloured graph I'. By
Corollary 3.5 either each face if 4-gonal or there exists a face of length two.

Case I: T — T is of type (4,4). By Proposition 3.7, " is a shifted rectangular grid of type (k xn;m).
It remains to prove that £ = 2 and (m,n) = 2. Without loss of generality we assume that the vertical
edges form alternating 1-3 cycles of length n, while the horizontal edges form alternating 0-2 cycles.
It follows that both k, n are even and so k > 2. Assume k > 2. Take a horizontal 0-2 path of
length 3 and let e and f be its initial and terminal edge. The edges e, f have the same colour, say
0. Since k > 2, e # f. Take the set C of all horizontal edges parallel with e (and f). The set C is
a cut-set separating the 1-2-3-subgraph into two disjoint connectivity components, a contradiction.
Hence k = 2. Let R =(vo, vi...v,_1) be a vertical 1-3 cycle. Then a horizontal 0-2 cycle C takes
consecutively vertices vo,Vi,, Van,. .. Since g(I') = 1 then m # 0. It follows that [RNC| = n/(m,n).
Thus the number of the connectivity components of the 0-1-2-subgraph is (n,m)/2. Since T' is
contracted, (n,m)/2 = 1.

Case II. There are faces of length 2. We may assume that the digonal faces cannot be cancelled by
using respective dipole-moves.

Claim 1. For every digonal face D there exists a face F of size > 4 such that D U F contains a
non-contractible cycle.



26 3-manifolds of Heegaard genus at most two

a) b)

Figure 3.3: Shifted rectangular grid of type (2 x 10;4) and its another drawing

Let u, v be vertices coincident to D. Let D be coloured by 0-1. Let Fy, Fy be 2-3 faces incident
to u and v, respectively. Since the graph is contracted, F, = F, = F. The face F is of size > 4,
otherwise the whole graph is a 4-dipole. If F is of size 4 then u-v are consecutive on the boundary
of F and we have 3-dipole, a contradiction. Assuming D U F bounds a disk we derive a that I' is a
4-dipole in the same way as in spherical case (see Proposition 3.6).

Assume two digonal faces D; incident with vertices u;, v;, i = 1,2 are attached to the same face
F as claimed in Claim 1. We say that Dy and D5 are attached in a crossing position if the boundary
cycle OF can be expressed in a form F = (Wiu1 WauaWsvi Wyvs) where Wi, @ = 1,2, 3,4 are some
paths.

Claim 2. Two digonal faces Dy and D, attached to the same face F' of size > 4 are attached to F'
in a crossing position.

Assume the digons D; and D are in a non-crossing position. Then O0F = (Wiu; Wovi WiuaWyvs).
Without loss of generality we may assume that 9D; and 0D are coloured by 0-1 and that OF is a
2-3 cycle. Let e, f, g, h be the four edges coloured by 3 and incident with u;, v, us, vo, respectively.
Then {e, f, g, h} is a cut-set separating the 0-1-2 subgraph into two components, a contradiction.

Claim 3. f; < 2.

Assume, for the contrary that there are three distinct digonal faces D1, Do, D3 and let Fy, Fj,
F3 be the respective faces attached to Dy, Dy and Ds.

Figure 3.4: Three dipoles incident with the same face

Sub-case F; = F3 = F. Assume D, and D3 are attached to the same face F' of length > 4. By
Claim 2 they are attached in a crossing position (see Fig. 3.6). It follows that D; is attached to F
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as well and by Claim 2 it is in a crossing position with both Ds, D3 (see Fig. 3.4). It follows that
the 1-2-3 subgraph of I' contains a subdivision of K3 3, a contradiction with Theorem 3.3.

e, S T ) R i i

' T’,‘ tz’f 3 ! ! Dy tz’v' 3

P o7 o, o7, | A (o/."o, el
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Figure 3.5: Two dipoles share at least one colour in common

Sub-case F; # F3, Fy # F3, F;1 # F3. (See Fig. 3.5) Clearly, we can choose two of Dy, Dy, D3
such that they are coloured by at most three colours, say the colour 3 is not used. Assume the
chosen dipoles are Dy, D,. We take the four edges e, f, g, h coloured by 3 in F} and F5 incident to
the vertices of the dipoles Dy, Ds. Then I'\ {e, f, g, h} is disconnected, a contradiction.

b, 3
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Figure 3.6: Two digons attached in a crossing position to F'

Using Claim 3 and Lemma 3.4 we deduce that for faces of length > 4 the following holds: Either
there is only one 8-gon or at most two 6-gons in I'. Assume there is one 8-gonal face F' in T
By Lemma 3.4 there are exactly two digonal faces Dq, Dy attached to F' in vertices ui, vi, us,
ve. By Claim 2 D; and Ds are attached to F' in a crossing position, see Fig 3.6. It follows that
OF = (Wiu; WouaWsviWyvs) up to relabelling. One can see, that no matter how D; and Dy are
attached to F', two of the paths W; are of even length and two are of odd length. At least one of the
paths of odd length is formed just by an edge e, otherwise the sum |[Wi| + |Wa| + |W3| + |[W4| > 10,
a contradiction. One can see that the edge e extends to an alternating path P of length three based
on vertices uj, ug, vi, vo, forming a part of boundary cycle of a face of length > 4, a contradiction.

2g 5 ,,,,, ry

R
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Figure 3.7: Basic graph from which non-simple genus one crystallisation are constructed
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Let us discuss the second possibility. We have two digonal faces D1, Dy attached to two hexagons
Fy, F5 respectively. All the other faces are 4-gonal. Since we have exactly two 6-gonal faces, there
is a 4-gonal face incident to the two vertices of D; as depicted on Fig 3.7. Let us call this initial
subgraph B. In what follows we use the assignment of vertices introduced on the Fig. 3.7. Let us
extend B by two vertices, say black x and white y, such that the cycle 0-4-y-x-5-1 bounds the
6-gonal face Fy. Since D- is attached to a couple of antipodal vertices of Fy, D5 is incident with 4
and 5. In particular we have a 4-gonal face bounded by cycle 4-y-x-5. Assuming x =2 and y = 3
we get a graph I' on Fig. 3.9a. If this is not the case we are forced to append a cylindric stripe
consisting of two 4-gonal faces bounded by cycles x-y-z-w and x-w-z-y, respectively, where z and w
are some vertices. Hence the edges 02, 13, yz and xw are coloured by the same colour and separate
T" into two connectivity components, a contradiction. Assume Fy = F; meaning D- is incident with
vertices 5 and x = 2. Then y = 3 and we get an embedding depicted on Fig 3.8a. However, it is
easy to see that this embedding is not colour-compatible.
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Figure 3.8: Disallowed constructions of embeddings

On the other hand, assume that we complete the base graph B by 4-gonal face 0-4-5-1. Denote
the resulting configuration B. Colour-compatible embedding forces us to continue a construction.
Let us append a stripe of 4-gonal faces with boundary cycles 4-5-x-w and 5-4-w-x. Let ¢ be the
colour of edges 02 and 13. Then the edges 02, 13 together with the edges coloured by ¢, incident
to w and x form a monochromatic edge-cut, a contradiction.

We have proved that the embedding contains two incident configurations, By, B, isomorphic (up
to recolouring of edges) to B. These two configurations can be glued together in two ways. Since
all the other faces are 4-gonal by the above argument there are no other faces. We end with two
embeddings depicted on figures Fig. 3.8b and Fig. 3.9b. The first one is not admissible since the
underlying graph is not regularly 4-edge-coloured. The second one satisfies all the requirements. O
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Figure 3.9: Non-simple reduced crystallisations of genus one
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3.3 Crystallisations of genus two

Let n be a non-negative integer. It follows from [7] that each (closed) 3-manifold can be represented
by a crystallisation I' which structure can be coded by a 2(n + 1)-tuple of integers satisfying certain
conditions. Let F,, be a set of 2(n 4 1)-tuples of non-negative integers:
f=(ho,h1...hn,qo0,q1,---qn), hi,qs € NU{0},
satisfying the following axioms:
(i) Vi € Zpy1 : hy >0,
(ii) all h; has the same parity,
(ifi) Vi € Zny1 10 < q; < hiy + hi = 21;,
)

(iv) all ¢; has the same parity.

Remark. From here all operations with numbers ¢; will be considered modulo 2!;, and according to
(iii), g; will be always the least non negative integer of the class.

Now let us define the set V(f) for a 2(n + 1)-tuple f € Fo:
vin= U {i}x2Za,
1€Ln+1

and the following involutory permutations on V(f):

ao(i, j) = (i,j + (=1)7),
Oél(ivj) = (7".] - (_l)j)v
. (i+1,2Lip1—7-1); 0<j<Mh
az(i,j) =4 _ ,
(Z—l,Qli —]—1); h¢§j<2li
as(i,j) = poagop™!,
where p : V(f) — V(f) is a bijection defined by the rule
p(i,5) = (i, 5 + qi)-
Now let f € F, and satisfies the following conditions:
(V) Vi € Zpt1 ¢ hi + q; is odd, h; and ¢; have different parity,
(vi) the group (ag, as) has exactly three orbits.

Definition 9 (Admissible 6-tuple) The elements of the set F, C Fr satisfying conditions (i) —
(vi) will be called admissible 2(n + 1)-tuples.

Construction 3.9 (Graph I'(f) associated to 2(n + 1)-tuple) Given

2(n + 1)-tuple f we define the associated graph I'(f) as follows. Let V' = V(f) be the set of vertices
of T'(f). Then the permutations g, a1, @y and a3 define the decomposition of the edge set into
four colours, the orbits of «; form the edges of I' coloured by i, for ¢ = 0,1,2,3. Observe that the
subgraphs I's, ¢ € A4 induced by the respective sets of colours are isomorphic planar graphs.
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Vice-versa let I' be a 4-coloured graph with a bicoloured 2-factor containing circles of even length
Co,C1,Cy,...,C4 coloured by colours 0 and 1. Other edges coloured by colours 2 and 3 join vertices
of I' such that the induced subgraphs I'y; and I's are planar and isomorphic. Now, let us code the
graph by the 2(n + 1)-tuple f = (ho,h1,...,hn,q0,41,---,qn). The first n items code the numbers
of edges coloured by 2 (3) joining the circles C;_; and C;, (i = 0,1,2,...,n) of I'a,. Clearly, the
planar subgraphs I'y; ~ I'y of I' are uniquely determined by the integers ho, k1, ha,...,hn. Then
I'(f) arises by gluing I'y with I'y in the cycles Cy, C1,C> ..., C, coloured by 0 and 1. The integers
90,91,G2 - - -, Gn determine the rotations of cycles Cy, C1,C5 ..., Cy in I's before the gluing is done.
In this way we get an embedding of T'(n) into the surface of genus n. For example, the graph coded
by 6-tuple (3,1,3,2,2,0) is embedded into the surface of genus 2 (see Fig. 3.10).

Figure 3.10: The graph represented by 6-tuple (3,1, 3;2,2,0)

The conditions (i) — (vi) come in part from the interpretation while in part they are forced by the
requirement that I' represents a orientable compact connected 3-manifold.

Theorem 3.10 [7] For every compact connected 3-manifold M of genus g there exists f € Fy such
that T'(f) represents M.

Agreement. Since we will deal only with manifolds coded by 2(n + 1)-tuples, we will shortly write
the manifold coded by 2(n + 1)-tuple f as M(f).

Lemma 3.11 Let n be a non-negative integer and let M be a 3-manifold represented by a graph
I'(f) given by a 2(n + 1)-tuple f € F,. Then the Heegaard genus g(M) of M is

g(M) <n.

Proof. To prove the result we show that the regular genus of I" is at most n. Set g be the genus of
the surface determined by the rotation of colours p = (0312). Recall that faces of the embedding
I' — S, are bounded by 0-3, 3-1, 1-2 and 2-0 coloured cycles in I'. One can easily check that the
above set of cycles consists of four faces which are 2(n + 1)-gons and all the other faces are 4-gons.
Thus the number of faces is

n n

f=4+42) (hi—1)=2-2n+2> h,.

i=0 i=0

Clearly, the number of vertices is v = 23" ; h; and number of edges is e = 4" ; h;. Inserting
these numbers into Euler-Poincaré formula we get

v—e+ f=2-2n.



Chapter 3. Combinatorial approach 31

Hence, g = n, and g(M) < g(T') < n. O

Agreement. From now we consider n = g, so that we talk about 2(g + 1)-tuples and similarly about
the set of admissibles as F.

Definition 10 (Frames) [6] Let T'(f), f € F2 be a crystallisation of 3-manifold of genus two. Let
L(f) be simple. Then T'(f) is a frame iff following conditions hold:

a) h; >0; 1 € Zs,

b) foreach (i,5) € V(f), (i,5) and one of (i,5+1),(i, j—1) does not belong to the same component
of {2, 3}-factor.

It is known, that frames are the only irreducible crystallisations of 3-manifolds of genus two. In
contrary, if I' is not a frame, some cancelling dipole-moves can be applied.

Definition 11 (Complexity of 2(g + 1)-tuple) Let f € F,. The number

Af) =D M

g
=0
is called the complexity of f.

Construction 3.12 (Presentation of the fundamental group w1 (f)) Let T'(f) be a crystalli-
sation of a 3-manifold given by an admissible 2(g + 1)-tuple.

Let G = (xo,21,...,%¢ | Ro,R1,...,Rg) be a (g + 1)-generator group. Set S = {zg,z1,...,24} to
be set of the cycles of the {0, 1}-factor of I'(f). Hence we have a mapping 8 : V(I') — S given by
inclusion. By the definition, the {2, 3}-factor has g + 1 cycles Wy, W1, Wa, ..., W,. The relator R;
is defined by W; = (vo,v1,ivVe,i... Vi i), ¢ = 0,1,2,..., g where the edge v( ;v is coloured by the
colour 2. The relator obtained by Cj; is:

(ki—1)/2
Ri= [ B(ve)B(vejurs)™, 0<i<y.
§=0

Add the relator xy = 1 into the presentation of the group after obtaining the relators. Thus the
group G can be considered as a g-generator finitely presented abstract group.

Theorem 3.13 [14] The group constructed in Construction 3.12 is isomorphic to the fundamental
group of a manifold M represented by I'(f).

Corrolary 3.14 Fundamental group of a 3-manifold of genus g is a finitely presented group of rank
at most g.

Now we are ready to derive the fundamental groups of 3-manifolds represented by crystallisations
depicted on Fig. 3.9. This way we basically prove that these crystallisations represents S x S2,
as expected. Denote by I'y, I'y the crystallisation depicted on Fig. 3.9a, Fig. 3.9b, respectively.
There are two 0-1 factors in the crystallisation I',. Using Gagliardi’s algorithm we derive the relator
ab~'ba~1bb~! = 1. One can easily see that this relator is trivial. Following the algorithm we exclude
the generator b getting m1 (T'y) & Z. The crystallisation I', admits two generators given by 0-1 cycles,
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as well. Using Gagliardi’s algorithm we derive relators aa~' = 1 and ab~'aa~'ba~! = 1, which are
trivial, as well. Hence m(T'y) = Z.

Agreement. Since all manifolds we deal with are coded by 2(g + 1)-tuples in F,, we will talk about
the fundamental groups given by 2(g+1)-tuple f, or shortly about the fundamental group of 2(g+1)-
tuple f. We will use the symbol 71 (f) for the fundamental group of manifold M(f). Similarly we
talk about the homology group of 2(g + 1)-tuple, H1(f).

In the following we focus mostly on the 3-manifolds of genus at most two. By Lemma 3.11 and
Theorem 3.10, these manifolds are represented by 4-coloured graphs coded by 6-tuples in Fa. It
is easy to design an algorithm to verify the conditions (i) — (vi) for a given integer vector with six
items. The most complicated seems to be to verify the condition (vi), but the complexity of this
algorithm is polynomial, depending on complexity of given 6-tuple f. Therefore we can construct
the set F» up to a fixed complexity in an effective way.

3.4 Equivalences on F;

Now we introduce the equivalence relations on Fo defined in [6, 17, 21]. If f = (ho, h1, h2, g0, 91, ¢2)
is an admissible 6-tuple define the permutations v, 12, 93 acting on F; as follows [6]:

¥1(ho, b1, ha, g0, q1,92) = (1, ha, hos g1, ¢2, o)
Y2(ho, b1, ha, qo, q1,92) = (ha, b1, hos o, 42, 1)
3 (ho, b1, k2, qo, q1, q2) = (ho, hi, ha; 2lo — qo, 201 — q1, 212 — q2)

The above described permutations represents some re-colourings of the graph I'a, (f).

Definition 12 (H-orbit) Let f,g € Fa. Let us define the relation

fggﬂne <w17¢27¢3>7 n(f) =g

This relation is an equivalence and we will call it H-equivalence on Fy. The equivalence classes
will be called H-orbits.

Lemma 3.15 H-equivalence preserves the admissibility of the 6-tuple.

Proof. See the Proposition 16 in [6]. O

Lemma 3.16 (Order of (¢1,19,13)) The group H = (¢1,19,13) is isomorphic to Dy, where
D4 is the group of symmetries of a regular hexagon. In particular, each H-orbit has at most 12
elements.

Proof. Tt follows from the definition of 1,12, %3 that ¢ = ¢35 = 12 = 1. The group (¢1,1)2) is
isomorphic to the dihedral group Dg because

PYortho = Y7

Also 13 commutes with the members of (¢1,15). Hence the group H satisfies the relations of
dihedral group Di3. Thus H is an epimorphic image of D15. To prove that the epimorphism is an
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isomorphism it is sufficient to find at least one admissible 6-tuple such that the respective H-orbit
has 12 different 6-tuples. The 6-tuple (1,3,5,2,2,2) is the such a 6-tuple. O

Following [17], let us define mapping o : Fo — F» :

(h07h17h27q07q17q2); CIOZO

G(h07h17h27q07q17q2) = {
(6) /la /QaQ67QZ/Laq/2); QO%O

where f = (hg, b, hy, 40, d1, q5) :

hoy =ho+hi1 —qo 46 = ho + h1 + ha — 2qo

b =qo G =q+qa+h ;0 < qo < ho, ha
hi =ha 4+ h1 — qo GB=q +q@+h

hy =qo+ h1 — ho q =hi

L =ho+ha—qo G =q+q—h ;g0 > ho, ha
hy = qo + h1 — ho g5 =qo+q2 — ho

hi = hy gy ="h1+ha—q

hi = ho 4 =q sho < qo < h2
5 ="h1+ha —ho a5 = 2qo + g2 +h1 — ho

ho = h1 + ho — h2 g0 =h1+ho—qo

b} = hy ¢t =2q+q +hi—hy ha<qo<ho
5 =M @ = q2

The above described operation represents a sequence of dipole-moves such that applying it to
the graph represented by an admissible 6-tuple we get the new graph, which can be represented by
an admissible 6-tuple too.

Definition 13 (G-equivalence) Let f,g € Fy. We define a relation:

fggﬂ’ye <”‘/’1a1/127¢370>a W(f) =g

This relation will be called G-equivalence on Fy. The equivalence classes will be called G-orbits
and will be marked as usual [f]g.

Agreement. Denote by [f]x a H-orbit containing f. Similar, denote by [f]g a G-orbit containing f.

Lemma 3.17 G-equivalence preserves the admissibility of the given 6-tuple.
Proof. See Theorem 5.1 in [17] O

Obviously, any G-orbit is a union of some H-orbits.

Definition 14 (Derivation of f) Let H, H' be two different H-orbits. Let f € HAg e H' : g =
o(f). Then we define a derivation of f as the difference 6(f) = z(g) — z(f) [17].
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Straightforward from Definitions 12 and 13 we get the following lemma.

Lemma 3.18 With the above notation

0 iff go =0 (a)
h1 —qo iff 0 < qog < ho, ho (b)
6(f) =19 hi1—ho iff ho < qo < ha (c)
hi — hs iff ho < qo < ho (d)
qo +h1 —ho — ha iff go > ho, h2 (e)

Note. We denote by f;(i =1,2,...,6) the i-th item of the vector representing an admissible 6-tuple.

Definition 15 Let f,g € Fa be two 6-tuples. Let I = {1,2,3,4,5,6} be the set of indexes of
components of these vectors. We define the lexical order < as follows:

f =g e forj=mt{il(i e I) A f(i) # 9(D)}, F(7) < 9(h)

Definition 16 (Natural order on F3) [21] Using the lexical order we derive an order on Fa in
the following way

f<ge (2(f) <z209)V((=(f) =2(9) A ([ <9))

We call this order the natural order on Fs.

Finally, we define representatives of G-orbits.

Definition 17 (Minimal representative of G-orbit) Let F' C Fy. The member f of F satisfy-
mg

feF:~(dgeF)g<f

is called a minimal representative of F.

Since F, with respect to < is a well-ordered set, for each F' there exists a unique minimal represen-
tative which is in the same time the least representative of F'.

Agreement. In the notation [f]y denoting an orbit of H-equivalence we shall always assume that
6-tuple f is minimal.
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To create a H-orbit from a given f is not difficult [6]. By Lemma 3.16 the members of [f]y are

f=(ho,h1,h2,q0,q1, )

P1f = (h1,h2,ho,q1, g2, o)

Yof = (ha,h1,ho,qo,q2,q1)
P3f = (ho,hi,ha,2lo — qo, 201 — q1,2l2 — ¢2)

Vif = (ha,ho,h1,q2,q0,q1)

Yot)1f = (ho,h2,h1,q1, 0, G2)
Va1 f = (h1,h2, ho, 2l — q1,2l2 — q2,2l0 — qo)

Vo3 f = (ha,ho,ha, q2,q1,90)
Vs? f = (ha, ho, b1, 2l — q2,2l0 — qo, 211 — q1)
VYahaf = (ha, h1, ho,2lo — qo,2l2 — q2,2l1 — q1)
Yatvatr f = (ho, ha, b1, 201 — q1, 2l — qo, 212 — q2)
Vsapi f = (1, ho, ha, 212 — g2, 21y — q1,2lo — qo)

Similarly, it is not complicated to compute an image o(f) for any f € Fa. In contrast to H-orbits a
G-orbit may be infinite. In what follows we give a simple method for deciding whether g =g h.

Example 3.19 The 6-tuple (1,3,%,2,2,k — 1) k > 3 belongs to an infinite G-orbit.

Since o((1,3,%,2,2,k— 1)) = (3,1,k + 2,k + 1,2,2) and this 6-tuple is H-equivalent to the 6-tuple
(1,3,k+2,2,2,k+1). Hence (1,3,k+2,2,2,k+1) ~¢ (1,3,k,2,2,k—1),and z(c?T(f)) > z(c’(f))
for every positive integer j. Thus [(1,3,k, 2,2,k — 1)]g is infinite.

Lemma 3.20 (Commutation rules in G) Let f € F,. Then the relations 12,5 and o satisfy

o? = 1,
1/)20- - U¢27
V3o = o3,

Proof. The proof of Lemma 3.20 is done by direct computation. Due to its technical complexity
we refer the reader to our paper [21] for full reading. O

The application of o is now easier. It follows that to calculate the action of o it is sufficient to
consider the images o f, o1 f and o1? f of the three members of an H-orbit.

Definition 18 (G-orbit graph) Let S = {V, E} be a graph which vertices are H-orbits and the
adjacency relation is given by:

(fln~ 9w &3¢ €lglu A3f € fln:g =af"
Since 02 = 1, the graph S is undirected. Note that S contains loops.

The connectivity components of S are in one-to-one correspondence with G-orbits. Therefore we call
the connectivity components of S, G-orbits too. By the definition, a G-orbit is a class of equivalence.
We can describe its minimal representatives.



36 3-manifolds of Heegaard genus at most two

(1,3,11,0,0,4) (1,7,7,0,0,6)

(139:208) (139208 g (139209 (157:426) g

(1,3,7;4,0,2)
(1,3,7,2,0,6)

(11,9002 (11,9206  (1,1,9:404) (1,37,2,2,6)

(226110 (135:22.4)
(135,224

(1,33,022) (133222)

(222113

Figure 3.11: Some components of connectivity of S

Agreement. Since the members of each H-orbit have the same complexity, we define the complexity
of a H-orbit as the complexity of its members. Since each H-orbit corresponds to a vertex in S, we
can speak about complexity of a vertex. Moreover, we say that u < v for u = [f]y and v = [g]x,
if f<g.

Lemma 3.21 (Neighbourhood of vertex in S) The set of neighbours of the vertex u = [f]x in
the graph S is

N = {[o ]2, [01 flae, [00F fla}-

In particular, a vertex in S has at most 3 neighbours.

Proof. Let A = (12,%3). Each H-orbit decomposes into the orbits induced by the action of
A. Since o commutes with the elements of A (see Lemma 3.20), it follows that for ¢ = ¢f,¢ €
A we have 0g = 0¢f = ¢of, hence [og]y = [0 f]x. Hence, the set of neighbours of vertex uis N. O

Theorem 3.22 (Main Theorem of [21]) Let v,u,w be three pairwise distinct vertices in S. Let
u and w be neighbours of v. Then

Proof. Let us analyse the derivation of complexity §(f) for a vertex v, f € [f] = v. Recall that
f = (ho,h1,h2,90,q1,q2) is the minimal representative of [f]x. It follows that hg < hy < he. By
Lemma 3.21 u,w € {[of]n, [0¢1f]n, [0¢? fln}. Hence we need to analyse the three derivations:
5(f), 6(¢1f) and §(x2f). In the following discussion we refer to Lemma 3.18.
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I. For 6(f) we get:

(@)
(b)
(©)

(d)
(e)

q =0=4(f) =0,

0 < qo < hg,ha = §(f) > 0, therefore hy — qo > ho — qo > 0,
ho < qo < hs, we consider sub-cases:

ho < qo < ha=9d(f)>0

or

ho=h1 < qo < h2 = §(f) =0,

ha < hg is in a contradiction with the minimality of f,

qo > ho, he = 5(f) > 0, therefore qo +h1 —hog —ha > hy —ho > 0.

II1. For 6(¢1 f) we get:

(a
(b
(¢
(d
(

e

~—_— — T

a1 =0=6(1f) =0,

0<q1 < hi,hg= (11 f) > 0, therefore hoa — 1 > h1 — g1 > 0,

h1 < ho is in a contradiction with the minimality of f,

ho <q1 <hi=96if) >0,

g1 > hi,ho = (1 f) > 0, therefore g1 + ho — h1 — hg > ha — hg > 0.

III. For §(¢? f) we get:

(a)
(0)

72 =0=05(if) =0,

0 < g2 < h1, he we must consider following cases:
g2 < ho < h1,he = 6(3f) >0

or

ho < g2 < h1 = 0¥ f) <O,

ho < hi,is in a contradiction with the minimality of f,
h1 < q2 < ho we consider sub-cases:

ho < h1 < g2 < ha = §(¢3f) <0

or

ho=h1 < g2 < ha = §(¥if) =0,

q2 > h1, ho we consider sub-cases:

ho <hi <hs <qx<hi+hs—ho=38v3f)<0
or

ho < hy <hy <qa=h1+hy—ho=06W3f)=0
or

hi,ha,hy +hy —ho < g2 = 6(1f) > 0.

The previous discussion describes the set of neighbours for the vertex v. The sub-cases are
pairwise eliminative and they cover all the possibilities.
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It follows from the previous discussion that two edges incident to vertices u, w with given
complexity never enter the vertex v with higher complexity, because only one from the three possible
neighbours of a given vertex x = [f]x can have a smaller complexity as x. This neighbour is
y = [o¥3f]3 and z(y) < z(x) in some sub-cases of Case IIL. The complexity of a neighbour of v
can be smaller only in Case III.

Now assume z(u) < z(v). We have already observed z(w) > z(v). Assume z(w) = z(v).
Analysing Cases I, IT and IIT we see that u satisfies one of the conditions ITI-b, ITI-d, I1I-e.
Moreover, w satisfies the condition I-c. Combining I-c with ITI-b, or ITI-d, or I1I-e we derive the
following contradictions:

ho="h1 <q <haANhg=g2 <hi,hag = hi <q <qg<h
ho="h1 <qo <haAhg<hy <hy<ga=hi+hy—hyg=ha <q2<ho
ho="h1 <qo < hoANhg < hy <qg < hs.

Hence z(w) > z(v) and we are done. a

Definition 19 (Horizontal branch) A wvertex v is in an horizontal branch B = B(v) of a G-orbit
if the following holds:
veB(v)eVYue NWV): z(u) > z(v)

Lemma 3.23 In every G-orbit there is precisely one horizontal branch B and B contains the mini-
mum element m of the G-orbit with respect to the order <. The complexity of all elements of B is
equal to z(m).

Proof. By the definition a horizontal branch B consists of the 6-tuples with a fixed complexity. A
minimal representative m of a G-orbit containing B belongs to B as well. Moreover, Theorem 3.22
implies that the complexity of the 6-tuples in B(m) is equal to z(m). a

Notice that a horizontal branch may contain only one vertex of S.

Theorem 3.24 (Algorithmical complexity of f ~g g problem) There exists a polynomial-time
algorithm in terms of the complexities to decide whether two 6-tuples in Fo are G-equivalent.

Proof. Let f and g be 6-tuples in F» such that z(f) > 2(g). Using Theorem 3.22 we find f1 € N(f)
and g1 € N(g) so that z(f1) < z(f) and z(g1) < z(g). Note that if the complexity of f1 (g1) is
less than z(f) (2(¢)), f1 (g1) is uniquely determined. By proceeding at most z(f) = n iterations
we reach the horizontal branches of the respective G-orbits containing f and g. If z(f,) # z(gn),
the 6-tuples are not G-equivalent. The complexity of this procedure is O(n). If z(f,) = z(gn)
the algorithm continues. By Lemma 3.23 we can choose the minimal representative of horizontal
branches Bi(f,) and Bz(g,) containing f, and g,. If the minimal representatives are equal then
f =g g. The complexity of this part of algorithm can be roughly estimated by O(z,(f)3). The
6-tuples f and g are not G-equivalent in the other case. O
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3.5 Catalogues of minimal representatives

Previous results allows us to generate the catalogues of minimal representatives of G-classes of 3-
manifolds of genus at most two.

The first one is a reduction of the catalogue of frames introduced in [6]. We have applied the
G-equivalence on it. New catalogue contains 309 of 6-tuples with complexity z < 21 instead of 695
6-tuples of the original. Note that in this catalogue were included only frames by Definition 10
representing 3-manifolds of genus exactly two.

The second catalogue is formed by computing of all admissible 6-tuples with complexity z < 21.
Following code describes the algorithm to test the minimality of 6-tuple according to the natural
order.

def isGmin(x):
gl=Hmin(sigma(x))
g2=Hmin(sigma(psil(x)))
g3=Hmin(sigma(psil(psil(x))))

if z(gl)<z(x) or z(g2)<z(x) or z(g3)<z(x):
return O
elif z(gl)==z(x) or z(g2)==z(x) or z(g3)==z(x):
hbranch=[]
hbranch.append (x)
if z(gl)==z(x) and listsearch(gl,hbranch)==0 :
hbranch.append(gl)
if z(g2)==z(x) and listsearch(g2,hbranch)==0:
hbranch. append(g2)
if z(g3)==z(x) and listsearch(g3,hbranch)==0:
hbranch.append(g3)
for t in hbranch:
gl=Hmin(sigma(t))
g2=Hmin(sigma(psil(t)))
g3=Hmin(sigma(psil(psil(t))))
if z(gl)==z(t) and listsearch(gl,hbranch)==0:
hbranch.append(gl)
if z(g2)==z(t) and listsearch(g2,hbranch)==0:
hbranch. append(g2)
if z(g3)==z(t) and listsearch(g3,hbranch)==0:
hbranch.append (g3)
t=hbranch[0]
for q in hbranch:
if 11(q,t)==1:
t=q
if 11(t,x)==1:
return 0
else:
return 1
else:
return 1
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Next, G-equivalence is applied. The reduced catalogue contains 433 6-tuples. In the process the
6-tuples producing relations of the form a* = b or b = a were excluded (see Chapter 6 for details).
By Theorem 2.13 and Corollary 2.14, these 6-tuples code 3-manifolds of genera at most one. Note
that after the reduction there are still some 6-tuples representing 3-manifolds of genera less than
two in the catalogue. In contrast to the catalogue of Casali [6] some non-frames are included.

Both catalogues are listed in Appendix A.



Chapter 4

Analysis of isomorphism classes of

fundamental groups

Investigation of the fundamental groups of represented 3-manifolds gives us a possibility to abstract
from the topological properties of a 3-manifold. We can use well-known techniques of group theory
to determine whether two 3-manifolds are not homeomorphic. Restriction to fundamental groups
reduces information on the structure of a considered 3-manifold. For example, note that fundamental
groups of lens-spaces are Z, disregarding the homotopy type given by the second parameter also.
Despite this fact we can ”construct” the fundamental groups of given manifolds and solve the
isomorphism problem for some classes of 3-manifolds. The full solution of the isomorphism problem
requires to get geometric interpretation of prime 3-manifolds.

The following section deals with presentations of fundamental groups associated with 6-tuples to
determine isomorphism classes the presented manifolds. We fist introduce some definitions, lemmas
and techniques of group theory used in this section. Note that the fundamental groups are considered
as abstract 2-generators groups. GAP — Groups, Algorithms and Programming system* [16] was
used in most of computations with groups presentations.

Finite groups which appear in the following text are called [n,k] using the notation of GAP,
meaning SmallGroup(n,k). Here n means the order of group and k means the position in the GAP
library of small groups.

4.1 From 6-tuples to fundamental groups

We can attach a group to a crystallisation of a 3-manifold M. This group is obtained by walking
through {4, j}-residues in (T, ). It can be proved, that this group is isomorphic to the fundamental
group of represented manifold M [14].

We now apply the Construction 3.12 to the case of admissible six-tuples. Derived groups are
finitely presented of the form (a,b | R1, Ra, R3). The presentations will be simplified by the GAP
(function TzGoGo ()) to get as simple relators as possible. One example follows.

*in the following we do not cite GAP

41
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Example 4.1 Let f = (3,3,9,2,0,4). Define the mapping 3 : V(I') — {a,b, ¢} as follows: 5(v) =
a, b, c depending on whether v belongs to 0-1 cycles Wy, Wy or Wa, respectively. The {2, 3}-factor
is a union of the connectivity components:

WO:
(fo, o1[1, 51([0, 101[2, 11[0, 41[2, 71[1, 01[2, 11]
[0, e1[2, 5][1, 2]1[2, 9]1[0, 81[2, 3]1[0, 21[1, 31)
Wil:
(o, 11(1, 41fo, 111[2, ol[0, 5]1[2, €61[1, 1][2, 10]
[o, 7102, 41)
W2:
(fo, 31r2, 8100, 91[2, 21)

To construct the components of connectivity we use the following simple algorithm :

while len(listed)<2*z(s): # while we do not cover all vertices
ver = findnew(s,listed) # find first uncovered vertex
ccomp = [] # create new empty component
# of connectivity

verl = [-1,-1]
listed.append(ver) # append vertex to list of
# covered vertices
ccomp . append (ver) # append vertex to the current
# component of connectivity
# while the component is not a cycle
#

create alpha_2 of vertex

while verl != ccomp[0]:
verl = alpha2(ver,s)
listed.append(verl)
ccomp . append (verl)
verl = alpha3(verl,s) # create alpha_3 of vertex
listed.append(verl)
ccomp . append (verl)
ver = verl

ccomp.pop ()

# we come back to cycle

# cut last vertex in component,

# it is the same as the first
ccomp . append (orbit) # append component to the known
#

components of connectivity

A vertex in a component of connectivity is coded by a pair of integers; the first one codes the cycle,
which belongs to, the second one codes the order in the cycle and can be 0 for now. We apply 8 on
the above cycles Wy, W1, Wy to find the respective relator symbols. In this way we get the following
the presentation of the group m1(f) by using the rules set in Construction 3.12:

7 (f) = {a,b,c| c=1,ab tac tfac  be tac be tactab ™ = 1,

1 1

ab tac tac be tac = 1,ac ac™ = 1).
and write the final form of the 2-generator fundamental group:
m1(f) = {a,b | ab~'a®baba®b™" = 1,ab”'a’ba = 1,a* = 1).

Setting ¢ = 1 and using Tietze transformations we finally get the normal form of presentation of the
group — m1(f) = (a,b | a®> = 1).
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4.2 Homology groups of 6-tuples

Knowing the presentations of fundamental groups of manifolds associated with 6-tuples we begin
with recognising group invariants to determine the isomorphism classes of fundamental groups m1(f),
where f ranges through the list of minimal representatives of G-classes.

The first considered invariant is the homology group Hi(f). We obtain homology group from
the fundamental group by factorising 71 (f) by the derived subgroup. In our case, this can be done
by adding the relator [a,b] into the presentation of fundamental group.

Example 4.2 (Determining homology group H;) Determine the homology group! for some 6-
tuples. Choose i.e. f1 = (7,7,7,2,2,2). By Construction 3.12 and applying Tietze transformations
we get the presentation

71(f1) = {a,b | b¥*a®b? = ab'a,a’b?a® = ba~'b)
Hi(f1) = (a,b | b*a*b* = ab™'a, a*b*a® = ba™'b, ab = ba)
in additive form:

Hi(f1) = (a,b | 5a+5b=0,5a = 0)

One can easily determine the homology group from previous presentation as Hi(f1) = Zs X Zs.

The other example gives an infinite homology group, we deal with the presentation in Example
4.1. The 6-tuple was fo = (3,3,9,2,0,4), the fundamental group is m1(f2) = (a,b | a®> = 1). The
respective homology group is Hi(f2) = Zg X Z.

Third example is based on 6-tuple f3 = (4,4,8,1,1,1). The fundamental group is 71 (f3) =
{a,b | b® = ab~ta,a*h? = 1) and homology group is Hi(f3) = (a,b | — 2a +4b = 0,4a + 2b = 0).
We demonstrate the problems with determining of homology groups. Let us use elementary row
operations on matrices to derive equivalent diagonal matrix. We have

-2 4 -2 4 —-10 20 -10 0 10 0
4 2 0 10 0 10 0 10 0 10 )

The last matrix suggests that the group is Z19 X Z19. However, this is false. Using GAP we check
that Hi(f3) & Za X Z19. An explanation consists in fact that the two equations 10a = 0 and 10b =0
are not equivalent with original ones but they are only consequences of them. Hence we have derived
a group H = Zqg X Z1g such that G & Zy X Zqg is a quotient of it. To make our calculations with
matrices correct we have to use ”=" instead of ”~".

The erroneous result we derived for f3 in Example 4.2 appears in the case of finite homology
groups. The explanation consists in distinguishing between calculation over the ring and over the
field. Generally, we solve the system of such equations over the field, but in the case of finitely

presented Abelian groups we have to compute over the ring Z only. Particular result for the case of
infinite homology groups is solved by Lemma 4.3.

Lemma 4.3 Let H be an infinite Abelian group H = (x,y | ax +by =0,cx+dy = @ Let a =
(a,c¢) = au + bu for some u,v € Z and let b = bu + dv.Then the group H = (z,y | ax + by = 0) and
one of the following cases hold:

Thomology groups presentations are always considered in additive form
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a) ZxZ,iffa=0and b=0
b) ZXZ‘a‘,iHBZO

d) Z X Z a5, iff @b # 0

(a.b)

Proof. Since H is infinite, the equations following from the presentation of the group H are linearly
dependent. Note that division is not allowed over Z. From Euclidean algorithm we know that there
are u,v € Z such that (a,c) = ¢ = au+cv. Note that ¢ = pq, p € Z. Rewrite the system of equations
in the matrix form. Using Gauss elimination method we get:

a b au bu q bu+dv
= = =
c d c d c d
q bu + dv a b
= = ~
0 d—p(bu+ dv) 0 d

Since the new equations are still linearly dependent, we know that ad = 0, and consequently a =
g = (a,c) # 0= d =0. Thus two equations transform into the following one:

ax + by = 0.

To prove the equivalence of the above equation and the system we have begun with, do the reverse
transformation. This can be done as follows:

(ab) <q bu+dv> <q bu+dv>
= =
0 0 0 d—p(bu+ dv) c d
The first equation one gets by multiplying the first line in matrix by integer ¥ = a/q. Hence
ar + by = 0 is equivalent with the original system of equations over Z.

To prove the cases of Lemma 4.3; in the Case a) we have two generated Abelian free group, since
the relator is Ox + Oy = 0, thus the group is Z x Z.

In Cases b) and ¢) we have the direct products of Z x Zg, Z x Zj, since we have the relators
ar = 0, by = 0, respectively.

The equation ax = —by appears in Case d). The set of solutions of this equation over the field
Q is {[gb, —qa], q¢ € Q}. However, the set of admissible results must be a subset of Z x Z. Choosing
q = 1/(—a,b) we get the solution with the smallest positive value. Thus, all other solutions over Z
are multiplicands of the chosen one. Set m = |—a|/(a,b) and n = |b|/(a,b). The group A = ([m,n])
is a normal subgroup of Z x Z and H @ Z x Z/A. Let H> K = ([0,m] @ H). Every coset has the
representative in the set {[z,y] € ZxZ; 0 <z < n,0 <y < n}, the order of |H/K| = mn. It follows
that H/K is isomorphic to the torsion subgroup T' of H and H 2 K x T = 7 X (Zy, x Zy,) [31, Th.
4.2.10]. Since m and n are relatively prime H/K = Z X Zyp. O

Note that the reduction technique used in the Proof of Theorem 4.3 gives an algorithm to reduce
a system consisting of finitely many linearly dependent equations in Z x Z. In each step we reduce
one of them and finally we get one equation equivalent to the system we begin with.
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Figure 4.1: Illustration of cosets Z,, X Z

4.3 Using low-index subgroups

One of the group invariants which turned out to be useful is a list of subgroups of bounded index.
This method is based on coset enumeration with upper bound, GAP can compute it in real time
for small index n. The input are two finitely presented groups, possibly non isomorphic. Using
GAP command LowIndexSubgroupsFpGroup (G,n) we obtain the list of representatives of conjugacy
classes of subgroups of index lower or equal to n for each of the considered groups. Obviously, two
groups with different lists of subgroups of index < n are not isomorphic. In many considered cases
the comparison of lengths of the lists is sufficient to distinguish non-isomorphic groups.

We use a particular improvement of the method selecting only normal subgroups from the list of
low index subgroups. It is clear that we can factorise the group by each member of this restricted
set to get all factors of bounded order. Since the considered normal subgroups have small indexes,
it is easy to compare lists of factor groups and test isomorphisms of respective factors ”by hand”.

The small program in GAP script and one example follow.

LINormSubPrintGens := function (g,n)
% takes two args: the group and the maximal
% index of the subgroup
local 1,d;
1:=LowIndexSubgroupsFpGroup(g,n);
% create list of subgroup up to index n
for d in 1 do
% for all subgroups in the list
if IsNormal(g,d)=true then
% if the subgroup is normal
Print (IdSmallGroup(g/d));
% print identification of factor
Print(" ");
Print (Generators0fGroup(d));
% print the subgroup generators
Print("\n");
fi;od;end;;
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One can use this example to create the functions which can be useful in situations which occurs in
real computations.

Example 4.4 (Show non-isomorphism of two groups) Let us have two finitely presented groups

G1 = {a,b]|a=0b%a%b?0b=aba®)

Gy = (a,b|a?=ba%b"1 a* = b2a"1b?)

We suppose that these groups are not isomorphic and we check it by using the function LINormSubPrint,
which is a modification of above mentioned procedure.

gap> g:=F/ [a*b~-2%a”-2%b~-2,a"3%b*a"3*b"-1];

<fp group on the generators [ a, b 1>

gap> h:=F/[a*xb”-1*a"3*b*a"2,a"4*b"~-2*%axb"-2];

<fp group on the generators [ a, b 1>

gap> LINormSubPrint(g,12);

(1,11 [02,110[4,110[8,110[3,110[6,21T112, 2]
[ 12, 3]

gap> LINormSubPrint(h,12);

(1,11 02,1104, 11008, 110[3,110[6,21T112, 2]
(10, 11 [ 12, 3]

From lengths of lists we deduce, that the group are not isomorphic. Moreover, the group G, contains
the normal subgroup N such that G/N = D which corresponds the vector [10,1], but the group
(G1 does not contain such a normal subgroup.

4.4 Some important groups

Oriented triangle groups. The oriented triangle group AT (k,m,n) is the group with the pre-
sentation At (k,m,n) = (a,b | a* = b™ = (ab)” = 1); k > m > n. The groups A*(k,2,2) are the
dihedral groups Doy.

Oriented triangle groups can be regarded as the groups grooving up from regular tessellations of
simply connected surfaces. The generators of these groups can be associated with some rotations
around a vertex named 0 (a) and around the barycentre of face incident with 0 (b) (see Fig. 4.2).
The form of the group is closely related to the geometry of the tessellated surface induced by the
action of A*(k,m,n). The geometry of the surface is:

e elliptic, iff 1/k+1/m+1/n>1
e Euclidean, iff 1/k+1/m+1/n=1
e hyperbolic, if 1/k+1/m+1/n<1

Lemma 4.5 Oriented triangle groups A1 (k,m,n) have trivial centres, except AT (k,2,2), where k
is even.

Proof. ¥ Any central element z € ((A*(k, m,n)) must commute with = and y, hence fixes the unique
fixed points of x and y in the surface onto which the group acts on; since z preserves orientation

fthanks to Gareth Jones
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o

Figure 4.2: Action of the group A™(5,4,2) on tessellation of type {5,4}.

and fixes two points, z = 1. This works for hyperbolic and Euclidean triangle groups, and with a
little extra effort (since rotations of the sphere have 2 fixed points, permuted by z), it also tells that
the centre of a spherical triangle group is trivial except for a dihedral group Dy,,n € N. a

Lemma 4.6 Let Z’ be a central subgroup Z' < G. Let G/Z' =2 At (k,m,n), k >m >n, m > 2 if
k even. Then the center ((G) = Z'.

Proof.  Clearly, ((G)/Z' is a central subgroup of G/Z’. By Lemma 4.5 {(G)/Z' = 1. It follows
(G = 7. 0

Extended triangle groups. The groups A(k,m,n) = {a,b | a* = b™ = (ab)™) k > m > n will be
called extended triangle groups. Note that these groups has the center (A(k, m,n) = Z, generated
by the element a* and the factor by the center is oriented triangle group AT (k,m,n).

Generalised quaternion groups (Dicyclic groups). The generalised quaternion group Q4,,, n >
2 is the group with the presentation Qg1 = {(a,b | a* = b? = (ab)?)8.

Lemma 4.7 Let G = (a,b | a* = b' = (a"b*)™ = 1) be a group and (k,7) =1 and (I, s) = 1. Then
G=H=(ry|a"=y = (ay)" =1).

Proof. Set the map ¢ : a” — z,b® — y. Since (k,7) = 1, x € (a) and |z| = |a|. The situation is
analogous for y. Thus G — H is a group isomorphism. O

Lemma 4.8 Let G = (a,b | a* = (a'b™)",...) be a group. Then G = (a,b | a* = (b™a")",.. ).

Proof. Immediate, since conjugation by an element a! of the group is an inner automorphism of
the group taking a* — a¥, a'b™ — b™al. O

Sthese groups are noted as (2,2, k) in [8]
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4.5 Finite cyclic fundamental groups and lens spaces

By Corollary 2.14 a 3-manifold represented by an admissible 6-tuple f with a cyclic fundamental
group is either a lens-space L(p,q) or S' x S? (see Theorem 4.11). An obstacle to recognise these
spaces from a presentation of the fundamental group 71 (f) comes from the fact that no algorithm to
decide whether 71 (f) is cyclic is known to us. Even if we know that f determines a lens-space L(p, q)
we know no procedure to determine the second parameter of the lens-space directly from f [13]. In
what follows we give a combinatorial definition of lens-spaces by means of crystallisations and prove
the structural results on the associated fundamental groups. On the other hand, if and admissible
6-tuple is a non-frame (which can be easily checked) we know that it represents a 3-manifold of
genus at most one.

Recall the definition of the graph coded by an admissible 2(g + 1)-tuple and apply its definition
for g = 1. A 4-tuple (ho, h1,qo,q1) codes the graph Aa,. Since this graph is a crystallisation, by
Lemma 3.11 codes a 3-manifold £(f) of genus less or equal one.

Definition 20 (Lens space L£(f)) The 3-manifold M(f) coded by an admissible 4-tuple
f = (ho,h1,q0,q1) is called a lens space.

Note that our definition of lens space includes also the Poincaré sphere S® coded by 4-tuples
(ho,h1,0,0). Generally, a lens space is given by two integers p and ¢, (p,q) = 1, see Chapter 2.
The relation between an admissible 4-tuple (ho, h1,qo,q1) and integers p, ¢ is apparent. Firstly,
the admissibility forces ¢o = g1. Secondly, observe that if hy + h] = ho + hy then the graphs that
correspond to (ho, h1, qo, qo) and (hy, ki, g0, qo) are isomorphic. Hence, setting p = (ho + h1)/2 and
q = qo/2 = q1/2 we get the two parameters p, ¢ describing the lens space L(p,q), (p,q) =1 in the
standard definition.

Let us deal with a concrete example of lens space L£(5,2) represented by 4-tuple f = (5,5,4,4).
The simplicial complex represented by the graph L£(f) (see Fig. 4.3) can be imagined as two 2p-
sided pyramids glued together in socles which triangular faces are glued with shift 2¢q. Using the

Figure 4.3: Lens space Aa,(5,5,4,4)
Construction 3.12 one can easily seen that the following lemma holds.

Lemma 4.9 Fundamental group of a lens space given by an admissible 4-tuple (ho, h1,qo,q1) is
isomorphic to finite cyclic group Z,,, where n = p/(p, q).

To see the opposite implication is a more delicate problem. Its proof requires explicit or implicit use
of Poincaré Conjecture or of Thurston’s Geometrisation Conjecture. Using known results one can
prove the following proposition paraphrasing Corollary 2.14.
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Proposition 4.10 Let M be a compact connected and orientable 3-manifold of genus at most two.
Then w1 (M) = Z,, implies that M is homeomorphic to a lens space L(p,q) for some ¢ € N coprime
to p.

Proof. 1f the genus of M is at most one then by Proposition 2.9 M is one of L(p,q), (p,q) =1,
S3 or §% x S. Since the fundamental group of S? x S! is known to be infinite cyclic the statement
holds in this case. Assume the genus of M is two. By Theorem 2.13 M is a quotient of S* by
the fundamental group (M) = Z,,. Free actions of cyclic groups Z, on S? are classified [33, pp.
250-251]. The quotient S®/Z, = L(p,q) for some g coprime to p. a

In what follows we shall extensively use the following statement which is a consequence of Proposi-
tion 4.10.

Theorem 4.11 Let f be an admissible 6-tuple. If m1(f) is cyclic, then M(f) is either a lens space
or S x §2.

Browsing the six-tuples in our catalogue of representatives of G-classes up to complexity 21 we have
found 52 representatives yielding cyclic fundamental groups including Z and finite cyclic groups with
orders in range from 2 to 29. See Appendix C for details.

Remark. It follows that admissible 4-tuples are in a correspondence with shifted rectangular grids
which coincide with the set of simple crystallisations of genus one, see Section 3.2. As a consequence
we get that the only 3-manifold of genus one which cannot be represented by an admissible 4-tuple
is S1 x S2. Proposition 3.8 suggests that S! x S? can be defined alternatively using one of the
crystallisations depicted on Fig. 3.9.

4.6 Connected sums and free products

Theorems 2.12 and 2.2 imply that a 3-manifold represented by an admissible 6-tuple is decomposable
if and only if its fundamental groups is a free product of two cyclic groups. A problem is that given
presentation of the fundamental group m1(f) we do not have an algorithm to recognise whether
m1(f) has the above structure. In what follows we derive some sufficient conditions on an admissible
6-tuple f to represent a decomposable 3-manifold.

Let f1 € Fy, f2 € F, for some integers g, g'. Let I'y = I'(f1) and T'y = I'(f2) be two crystallisa-
tions of 3-manifolds. We define a graph operation called join of I'y and I's, denoted 'y #I's, in the
following way [12].

Construction 4.12 (Join of I'; and T'y) Choose vertex u in I'; and v in T'y. Cut both vertices
from the respective graphs and glue the hanging edges of the graphs preserving the colours. Denote
the resulting graph I' = I'1 #I's.

Note that the same operation is mentioned in the paper of Ferri and Gagliardi [12].

Lemma 4.13 Denote M, N the 3-manifolds represented by crystallisations I'1,I's, respectively.
Then the graph I' = I';#1'5 is a crystallisation representing the connected sum M#N.

Proof. By cutting only one vertex of I'1, I's we cut one simplex of the simplicial complex represented
by I'1, ', respectively. Since a simplex is contractible, the gluing of the edges preserving the colours
is equivalent to creating the connected sum of represented 3-manifolds. Thus I" represents M#N .
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By Theorem 3.3, it remains to prove that I' is contracted. Choose a colour ¢ € A4. By the
assumptions I'z splits into two subgraphs (I'1),\ u and (I'2),\ v joined by a 3-edge-cut. Since I'y, I'
are crystallisations, the subgraphs (I'1),,(I'z), are connected. We claim that they are 2-connected.
Assume, to the contrary that say, (I'1),, has a cut-vertex. Then (I'1), has a bridge. However a cubic
graph containing a bridge does not admit a 3-edge-colouring. It follows that both (I'1), \ u and
(I'2); \ v are connected, and consequently, I's is connected as well. a

In the particular case of joins of lens spaces we have the following lemma.
Lemma 4.14 Let f; = (ho,h1,q,q9) and fo = (h{,h),q,q") be admissible 4-tuples. The join
Aa, (f1)#AA,(f2) is a crystallisation of a connected sum of lens spaces L(p1,q1)#L(p2,q2) which

is coded by the 6-tuple f = (1,p1 — 1,p2 — 1,42, q1,0), where p; = (ho + h1)/2, p2 = (hy + 1)) /2,
@1 =qand g2 = ¢

1B2

L&"" ‘ e
Y iuz V2 ‘W
A Bi ’
A Bl

Figure 4.4: Join of lens-space graphs

Proof. Recall that the crystallisations of lens spaces are bipartite and assume that they are
represented by 4-tuples (2p1 — 1,1,¢1,¢1) and (1,2pa — 1,¢2,q92). We will cut the vertices u; €
V(Aa,(f1)) and vi € Aa,(f2). The proof is done if the conditions of admissibility for 6-tuple will
be observed. The conditions (i) — (v) are trivial to prove, since they come from the definition of
crystallisations Aa,(f) and definition of join.

Let uauy, usuy, usuy, uguy be the edges in I'y = Aa,(f1) coloured by 0, 2, 0, 2 respectively.
It follows that the {2,3}-factor in I'; consists of two cycles of the form (uzu;A;) and (uquzds),
where A;, A are {2,3}-coloured paths. Similarly, the {2, 3}-factor splits into two {2, 3}-coloured
cycles of the form (v3viB;) and (v4vaBs) in I's = Aa,(f2) (see Fig. 4.4). By the definition, the
join in vertices u; and vy gives rise to three {2,3}-coloured cycles of the form C; = (usv3Bi A1),
Cy = (ugugAs) and C5 = (v4vaBs). Hence the condition (vi) is satisfied and I' = I'y #I's is coded
by an admissible 6-tuple f. By direct checking we derive f has the required form (see Fig. 4.5). O

The following statement gives an algebraic criterion to recognise admissible 6-tuples representing
decomposable 3-manifolds of genus two.
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Figure 4.5: A crystallisation representing £(3, 1)#L(5,2)

Theorem 4.15 Let f be an admissible 6-tuple. Let w1 (f) = C1 * Co be a free product of cyclic
groups. Then M = Mi#Ms with m1(M1) = C1 and w1 (Msz) = Cy. Moreover either C; = Z, and
M; = L(p,q) for some q coprime to p, or C; =7Z and M; = S1 X Ss, fori=1,2.

Proof. First part follows from Theorem 2.2. The second part follows from Theorem 2.12. O

It follows from Theorem 2.1 that fundamental group of an admissible 6-tuple f = (1,2p — 1,2r —
1,2s,2q,0) representing L(p, q)#L(r,s) is Z, * Z,. The parameters of the lens spaces into which
the 3-manifold coded by f decomposes can be derived directly from f. Unfortunately, there are
admissible 6-tuples with fundamental group isomorphic to a free product Z, * Z,, which are not in
the above form. By Theorem 4.15 we deduce that the 3-manifold is a connected sum of lens spaces
L(p,q)#L(r,s), for some integers ¢,s. This time we are not able to compute ¢ and s from the
6-tuple. There are 137 minimal representatives of G-classes up to complexity 21 which fundamental
groups are free products of cyclic groups (see Appendix C).
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4.7 Acyclic indecomposable fundamental groups

In what follows, we shall analyse the fundamental groups of 3-manifolds represented by admissible
6-tuples from the list obtained in Chapter 3. Using the methods described in Section 4.2 we firstly
decompose the input list into the homology classes. Each homology class is analysed case-by-case.
The analysis of a homology class begins with a table containing minimal representatives of G-classes
(see Chapter 3 and Appendix A) of complexity at most 21 belonging to the considered class as
well as the respective fundamental groups obtained by using the algorithm of Gagliardi described
in Section 4.1. Since our primary aim is to identify prime 3-manifolds of genus two included in our
catalogue, in the first step we exclude from the consideration representatives which fundamental
groups are either finite cyclic or free products of finite cyclic groups.

Each homology class is examined in a separate paragraph starting by a table of respective presen-
tations of fundamental groups obtained from 6-tuples by using the Gagliardi’s algorithm. Knowing
these presentations GAP has been used to test the finiteness of fundamental groups employing
Knuth-Bendix rewriting systems related to presented groups [10]. This was done by using a simple
script described in Chapter 6. Knowing, that rewriting system is confluent, a finiteness of the group
was deduced and it was localised (with some exceptions) in GAP library of small groups. Many
isomorphisms between groups within homology classes were set in this way. The rest of groups
were tested using low-index subgroups procedure to set possible non-isomorphisms. Finally, ad-hoc
methods were used to set isomorphisms between groups with the same lists of low-index subgroups.
These derivations are described in the text of respective paragraph describing a homology class.
Every paragraph contains in the end the table of representatives of isomorphism classes obtained
by using procedure described above. Using substitutions, the generators may change. Thus, the
generators "a” and ”b” of the presentations in the output table may be different from the original
ones. The results are summarised in the last section of this chapter. Many extended triangle groups
appeared in all the list of representatives.

In what follows in every homology class we provide a similar procedure to distinguish isomorphism
classes of fundamental groups. At first we use low-index subgroups to determine non-isomorphisms
in the list. Further, we try to find the isomorphisms between the groups with the same list of
low-index subgroups. The following Example gives a detailed insight to the method.

Example 4.16 Let have three groups given by presentations:

G = (a,b| ab ta " tbaba=tb~t a*bta " tba o7t ab"ta"2b Lab),

H = {(a,b| ab ta"tba='b"1 a?b~ta= %=1, ab~ta=3b"1ab),

K ={a,b|ab ta"2b"tab"t ab a1, ab ta"2b"2a"2b " Lab  Labab~t).
All of them have the abelianisation isomorphic to Z. Using the GAP script LINormSubPrint we
checked that the lists of factor groups by low-index normal subgroups up to index 12 are the same
for G and H and contain 15 members. The list of respective factors contains 12 members for the
group K. It follows G 22 K and H 2 K. We are to prove a possible isomorphism G = H. It is done
by following way.

Rewrite the presentation of the group G in the generators a and ¢ = ab~!. The first relator
is a® = cac 2ac, the second relator is cac = aca. The third relator follows from previous two.
Rewrite the relators to the form a3 = (ac)ac™2ac and (ac)? = a(ac)a. Rewrite the presentation in
the generators a and d = ac. The second relator is d?> = ada and the first one is a® = dad~'ad'ad.
Let us multiply the second relator from left and from right by a. The new form of this relator is
a® = adad~‘*ad lada. Insert now the second relator into the first. The result is a® = dad. Then
left multiply the first relator by a and the second relator from right by d. The final form of the
presentation of this group is G = {(a,d | a® = d® = (ad)?).
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In the case of the group H the rewriting of the presentation in generators a and ¢ = ab™! is useful.
The first relator transforms into ¢ = aca, the second relator transforms into a® = cac. The third
relator can be derived by using previous two relators. Now right multiply the first relator by ¢ and the
second relator from left by a. Now it is easy to derive the presentation H = (a,c | a® = ¢* = (ac)?).

In both cases the rewriting process terminates with the same presentation. We claim that
this means G = H. Our argument is based on von Dyck’s Theorem [31, p. 51]. In each step
the substitution of generators a, b by some words ¢ = {a,b,a™ 1,67 1}* and d = {a,b,a" 1,071} +
determines an epimorphism e

€:(a,b| R) — {(¢,d | Q)

from (a,b) onto {(c¢,d) < {(a,b). To see that € is an automorphism it is enough to express the
generators ¢ and b in terms of ¢ and d. In the above rewriting process this can be easily seen. The
automorphism G — H can be obtained by composing of the sequence of the particular substitutions.
In a few cases where the substitution are more complex (i.e. in homology class Zs x Z5) we define
an inverse epimorphism as well proving that the considered are isomorphic. Note also that explicit
epimorphisms are constructed by GAP in all cases of finite groups.

Now let us solve the group K. Rewrite the second relator in the presentation of the group K to
the form a = bab to get the equation a = b. One can easily see that K = Z, since substituting a to
other relators gives no new relation for a.

Finally we get two isomorphism classes — Z and (a,b | a® = b3 = (ab)?).
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4.7.1 Finite homology groups

Homology class H; =1

Table 4.1: Original relators for H; = 1

No. f G
113, 7,11, 4, 6, 0) | {a,b ] ab=3a3 ab—"a® ab=2a?)
21 (3,5,09, 4, 4,12) <a7b|ab 2abb latb=ta=1)
3| (4, 6,10, 3, 5,15) | {(a,b | ab2ab,b~ta*b™ 1a_1>
41 (3, 5,13, 4, 4,16) | {(a,b| ab=2ab,b=tab"1a1)
51 (4, 4, 8, 3, 3, 7) (a,b|ab 1 71ba’1b L b3ab—2a)
6| (4, 4,12, 3, 3,11) | (a,b| b~ 1aba Lba, bab~ g >
71(5,5,5, 4,4, 4) | {a,b|ab ta" b 1abb o= 1v3a~ b*)
8| (5, 7,7,6, 6, 4| (ab] —1b Labab=t, b~ 1a—1b4 “1b~1a)
9|(5,5,9, 4, 4, 8) | {a,b|ab ta"tba~ 1b ta,a?ba=tb"ta"tba)
0|C7,7,7, 6,6, 6)|{ab]|abta tbaba b~ a,ab " ta"tb%a" b~ tab)

The group Gy is the only trivial group in the list.

The orders of fundamental groups G1, G2, G3 and G7 are all 120. The mutual isomorphism of
these groups can be checked by using GAP. This group was recognised as [120,5]. The structure
of this group can be described as follows. The center of this group is isomorphic to Zs and factor
G/¢(@G) is isomorphic to the alternating group on five elements. Hence, the group is a central
extension of Zs by As. The canonical presentation of the group can be obtained i.e. from the
presentation of G'3. Rewrite relators into the form b? = aba and a* = bab. Then right multiply the
first relator by b and left multiply the second relator by a. Thus the presentation of the group is
{a,b | a® = b% = (ab)?).

Let us examine the presentation of the group G4. At first rewrite the presentation in generators
c = a and d = a’b~!. Note that ¢ and d generates the group G4. The first relator turns into
d’c'd ¢! = 1 and further simplifies into d®> = (ed)?. Second relator changes into the form
c2d~'c'de='d~!' = 1. Using the first relator we derive d"'c™! = cd~2. Substituting it into the
second relator we get c®d~'c 1d~! = 1. Hence ¢’ = (cd)?. Finally, we rewrite everything in the
letters a and b to get the presentation G4 = (a,b | a” = b* = (ab)?).

Gy = G4. To recognise the type of G5 we rewrite the presentation in the generators b and
¢ = ab. From the first relation we get ¢ 'b71¢?b = 1, the second one transforms into the form
c%c b~ 1eb~! = 1. Rewrite the first relator to the form ¢~ '6~! = bc~2 and substitute it twice
into the second relator to get ¢~ 'b"c™2 = 1. Rewrite the fist relator to the form c? = beb and by
right multiplication by ¢ we obtain ¢3 = (bc)2. The assignment ¢ : b — a, ¢ — b extends to an
isomorphism G5 = G4, since the generators are mapped onto the generators and the relations are
preserved.

Gg = G4. To examine Gg we first rewrite the relations in the generators a and ¢ = b~'a. The
relations transform into ac~2ac = 1 and cac 'aca™® = 1. Rewriting the first relation into the form
cac™' = a7 'c and substituting it into the second one we get caca® = 1. It follows that c? = aca
and a® = cac. The assignment ¢ : a — a, c — b extends to a group isomorphism Gg = Gy, since it
maps the generators onto the generators and the relations are preserved.

Gg = G4. An isomorphism of these groups can be easily checked by rewriting the relators of G'g
into the form b? = aba for the first one, and a® = bab for the second one. The isomorphism Gg = G4
can be easily set by taking ¢ : a — a,b— b.

G10 = Gy4. The situation is more complicated in the case of the 6-tuple
(7,7,7,6,6,6). It is not easy to define a group isomorphism proving G19 = G4. However, it is noted
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n [6] that the 3-manifold represented by this 6-tuple is homeomorphic to the manifold represented by
the 6-tuple (4,4,12,3,3,11): "The I'(7,7,7; 6,6, 6) represents the 2-fold covering space S3 branched
over the torus link {3,7}. The same 3-manifold is also represented by I'(4,4,12;5,3,9), as the
2 fold covering space of S® branched over the knot K{” [6]. Since (4,4,12,5,3,9) is equivalent

o (4,4,12,3,3,11) (one can see it applying the o-operator defined in [17]), it follows that the
fundamental groups G19 & Gg = Gy4.

It transpires that the homology class H; = 1 consists of the following three isomorphism classes
of fundamental groups:

Table 4.2: Isomorphism classes in H; =1

f G ¢G) | G/EG) #
(3, 7,11, 6, 0,12) [ 1 1 1 1
(5,5,5,4, 4,4 | (ab]|a®=0b=(ab)?) | Zs As 4
(5,5,9,4, 4,8 | {ab|d =b=(@b)? |Z A+(7,3,2) | 5

Homology class Hi = Zs

Table 4.3: Original relators for H; = Zy

No. f G
1] (4, 4, 6, 3, 3, 5 | (a,b] b%ab2a,bab—2ab,ab~ta"tba=1b~1)
21(3,5,7, 4, 4,10) | (a,b | ab—2ab,b~'a%b™ 0y a~t)
3|4, 6,8, 3, 5,13) | (a,b| ab"2ab, b~ ta®b"1a" 1)
41 (4, 6,8,5,5,11) | (a,b| ab=3ab,ab ta"1b™ 1a3>
51 (3, 7,9, 4, 4,14) <a,b|ab 3ab,ab La=th=1a3)
6| (4, 6,10, 5, 3,15) | {a,b | ab—2ab,ab"ta"tb"1a?)
7| (6, 6,8,3,3,9 <a7b|ab 1ab2 a~tb~tab~ ) a=?)
8| (6, 6,8,3, 7,7 | {ab]|aba” 2ba ab~ta~'bababa~1b~1)
9| (5, 5,11, 4, 4,10) | {(a,b| ab~ta 1ba 1b Ya,aba=1b"1a"1ba)
105, 7,9, 2, 2,12) | {(a,b | ab=tab? ab~ta=3b71)
1| (5, 7,9, 6, 6,12) <a,b|ab‘la_lb_lab,azba_6b>

The groups G1, Go, G3, Gg, G7 and G1¢ are isomorphic to the group, which is an extension of
Zo by Sy. The result comes from GAP. The presentation of the group can be derived e.g. from
the presentation of G3. Rewrite the fist relator into the form b? = aba and the second one into the
form a® = bab. Let us now right multiplicate the first relation by b and left multiplicate the second
relation by a to get the following presentation of the group G = (a,b | a* = b3 = (ab)?) =2 A(4, 3, 2).

G5 = Gy4. The isomorphism of the groups G4 and Gj is clear since the groups have the same
presentation. The relators can be rewritten to a simpler form as follows. Rewrite the first relator
into the form b3 = aba and the second one to the form a* = bab. Multiplicate the relators b from
right or a form left respectively. The resulting group is G4 = (a,b | a® = b* = (ab)?) = A(5,4,2).

Gg = G4. In the case of the group Gg rewrite the presentation in generators a and ¢ = ab.
The first relator is a® = cac after substitution, the second a’c~ta~'c?a~le¢~! = 1. The first relator
can be written in the following forms: a 3¢ = ¢ 'a™' and ca™ = a~'¢~!. Let us substitute these
forms of the first relator into the second relator at the appropriate places. We get a* = ¢® as the
second relation. Let us do right multiplication of the first relation by a to get ¢® = a* = (ca)?. The
isomorphism Gg = G4 is given by setting ¢ : ¢ +— a,a +— b.

G11 = Gg. Rewriting of presentation in generators a and ¢ = ab helps to analyse the presentation
of the group Gy;. After the substitution we get the relations ¢ = aca and a” = cac. By right
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multiplication of the first relation by ¢ and by the left multiplication of the second relation by a we
get the presentation G11 = (a,b | a® = b3 = (ab)?) = A(8,3,2).

Let us rewrite the relators of Gy at first. From the second relation a*ba='b"'a"1b = 1 we
get ba=1b™! = a~*b~'a. Inserting it into the first relation we have a?b~ta"'a=*b~'a = 1. This
relation reduces to b=1a?b~! = a®. Set ¢ = b~'a®. Clearly Gg = (a,c). From previous step we get
c? = a®. Rewriting the first relation in generators a, ¢ we derive a 'ca™'c 'a"'c = 1. It follows
(a=tc)?a=te™! = 1. By right multiplication by ¢? we obtain (a~!c)® = ¢?. Hence the group Gy has
presentation

A(8,3,2) 2 Gy = (a,c | a® = (a"¢c)®* =) = Gy

It follows that the homology class Zs is a union of the following three isomorphism classes.

Table 4.4: Isomorphism classes in H; = Zsg

f G (@) | G/C(G) #
(4, 4,6, 3, 3,5 | (a,b]a*=0b=(ab)?) | Zs S, 6
(4, 6,8,5,5,11) | (a,b]a®=0bt=(ab)?) | Z At(5,4,2) | 3
(5, 5,11, 4, 4,10) | (a,b| a® =0> = (ab)?) | Z A*(8,3,2) | 2

Homology class Hi = Zo X Zo

Table 4.5: Original relators for Hy = Zy X Zo

No. f G
113, 3,3, 2,2, 2) | (ab]b%? ba’b,ab ta"1b71)
21(3,3,7,2,2,6)| (ab]|b taba,b~ta"*b1)
31 (4, 4,6, 3,3, 3) | (ab]b?a tabt)
41(5,5,5,2,2,6) | {ab]ba*b,ab"ta"tb"1)
5| (3, 3,11, 2, 2,10) | {(a,b | b~taba,b~ta=6b1)
6| (4, 4,10, 1, 5, 9) | (a,b| b taba,b"ta"*b1)
7|1 C4, 6, 8,5, 7,11) | {a,b| ab~tab,b~ta"tb"1a?)
8| (5,5,09,2,2,10) | {a,b|ab tab, b~ ta"4p71)
91 (5,5,09, 4,4, 4) | (a,b]b%?ab ta"b71)
10 | ( 4, 6,10, 5, 5,13) | {(a,b | ab—ab, aba~"b)
11| (s, 6,8, 3,7, 3 | {(ab]b*? ab"ta"1b71)
12| (6, 6, 8,5, 3,5 | {(ab]b*?abtatb7t)
13| (3, 3,15, 2, 2,14) | {(a,b | b~ taba,b=ta=8b" 1)
14 | ( 3, 7,11, 4, 4,16) | {(a,b| ab %ab,b"'a’b " 'a™?)

The groups G1, G3, G4, Gg, G11 and G12 were recognised by the GAP to be the same. The
group to which they are isomorphic is [8,4]. This group has the center Zy and the Abelian factor
by the center is of size 4. There is only one such a group — the group of quaternions Qs [8, p. 19].

The fundamental groups G2, Gg, G7 and Gg were recognised to be isomorphic to [16,9]. It
has the center Zs. The presentation can be computed i.e. for the 6-tuple ( 3, 3, 7, 2, 2, 6).
It has the fundamental group G = (a,b | b~taba = 1,b"ta*b~! = 1). From the second relation
of presentation we have a=* = b%. From b~ 'aba = b~'a*b™! we get (ab)? = a~*. Providing the
derivations

abab = a * =12

b lab = a7t
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we get a tool to prove a* = b= 16?0 = b~ la*b = (b~ 1ab)* = a*. Finally, G2 = (a,b | a* = b* = (ab)?),
which is the group Q16[8, p. 19].

The analysis of the groups G5 and Gi3 can be done in the similar way as it was shown in
previous paragraph. We get the fundamental groups G5 = (a,b | a® = bv? = (ab)?) = Qo4 and
Gi3 = {(a,b | a® = b* = (ab)?) = Q32 respectively.

G14 = G1g. Since the presentations of groups Gig and G14 are the same, they can be dealt
together. Rewrite the first relation to the form b3 = aba and the second relation to the form
a® = bab. The second step is to right multiply the first relation by b and left multiply the second
relation by a. We get the presentation Gig = (a,b | a® = b* = (ab)?) = A(6,4, 2).

Summarising we have the following five isomorphism classes in the homotopy class Zo X Zs.

Table 4.6: Isomorphism classes in Hy = Zo X Zo

f G ((G) | G/CG) #
(3,3,3,2,2, 2 | (ab|a®>=0b%=(ab)?) | Zs Dy 6
(3,3,7,2,2,86) | (a,b]|a*=0b%=(ab)?) | Zs Dg 4
( 3, 3,11, 2, 2,10) | (a,b | a® =b2 = (ab)?) | Zs Do 1
( 3, 3,15, 2, 2,14) | (a,b | a® =b? = (ab)?) | Zs D 1
(4, 6,10, 5, 5,13) | (a,b|a®=0b* = (ab)?) | Z AT(6,4,2) | 2

Homology class Hi = Z3

Table 4.7: Original relators for H, = Z3

No. f G

1] (4, 4, 4, 3, 3, 3) | (a,b] ab~ta"tb"ta,ab—2ab)

21 (3,5,5, 4, 4,2 | (a,b|ab ta" b ta,ab"2ab)

3| (4, 6,6, 3, 5,11) | (a,b | b ta®b"ta"t ab—2ab)

416, 6,6,3,3,7 | (ab|abta"2b"t ab~tab?)

5| (5, 7,7, 2, 2,10) | {a,b|abta"2b"1 ab"tab?)

6| (5, 7,7, 4, 6,12) | {a,b| ab—3a3, ab=2ab—2ab)

71 C4, 6,10, 7, 5, 3) | {(a,b| ab~2ab,ab"ta"'b"ta)

8| (6, 6,8, 1, 5,11) | (a,b|ba"b"ta"tb,a?b ta"tb71)

9| (5, 5,11, 2, 6,10) | (a,b | ab~tab=ta=3b=1 ab=2ab ta"tba"1b1)
0(C7,7,7, 2,8, 8 | {ab]|ab tabta"2b"t a 'babababa~")
11(C7,7,7, 4, 6, 6) | {a,b|ba"bta"tbab ta"tb"1a)

Most of groups in the subclass, namely G1, G2, G3, G4, G5, G7, Gs and (G11 were identified
by the GAP to be isomorphic to [24,3]. This group has the center Z, and a factor by the center
of size 12. This factor is isomorphic to the alternating group A4. The presentation of this group
can be easily derived from the presentation of G;. Rewrite the relators into the form a? = bab and
b? = aba. Left multiply the first relator by a and right multiply the second relator by b. Thus
G1 = {a,b | a® = b = (ab)?) = A(3,3,2).

The presentation of the group G contains the relation a* = b3. Thus we are about to rewrite
the second relation. Right multiplication by =3 helps. The presentation is Gg = (a,b | a* = b3 =
(ab=2)7%).

Gg = Gg. The presentation of the group Gy with generators a and ¢ = ab~! is more suitable

to determine the fundamental group. First relation becomes a* = ¢3. The second relation can be
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derived as follows. In the generators a and ¢ we get (c?a=!)?c ta=! = 1. It follows that

(02(1 1)2 71@ 1 _ 1’
( )7 = ac
2) 3 03.
Thus the presentation of Gy is (a,b | a* = ¢3 = (ac™2)73. Set the isomorphism Gy = G to be

¢:avr— a,c—b.

G10 = Gg. In the case of the group G19 we rewrite the presentation in the generators a and
¢ = ab. New relators are a® = ¢* and (a?c™!)? = ca(a=3a®) = (ca=2)a®. The desired isomorphism
G10 = G is set by the map ¢ : c+— a,a — b.

The homology class contains only two different isomorphism classes of fundamental groups.

Table 4.8: Isomorphism classes in H; = Zg
f G (@) | G/C(G) Id

(4, 4, 4,3, 3, 3) | (a,b]a®=0%=(ab)?) Zs Ay 8
(5,7,7,4,6,12) | (a,b|a* == (ab"2)73) | Z A1(4,3,3) | 3
Homology class Hi = Z3 X Zs3

Table 4.9: Original relators for Hy = Z3 X Zs
No. f G

1] C4, 6,6, 1,1, 9 | (a,b] a’b> ab®abtab™ 1)

21 (5,5,7, 2,6, 2 | (ab|ab” 3a2 ab=tab~ta=2p71)

3|1C4,8,8,5,7,3) | {abl|ab3a® a b ta"tb" 1a‘ll)2>

41(5,7,9, 4,6, 2 <ab|ab3a2,ab1b1*2b 1y

In the case of the group G rewriting the relators into the form a® = b=3 and (ab=1)?ab? = 1 helps.
Let us right multiply the second relator by b=3 to get a® = b2 = (ab~!)3. Now choose new generators
a and ¢ = b~! and rewrite the presentation into the form G = (a,c | a® = ¢® = (ac)3) = A(3 3,3).

Gz = G1. In the case of the group G3 rewrite the presentation with the generators ¢ = a~
and d = b='. We have ¢® = d* and (cd)?cd=2 = 1. To get final form of the presentation, right
multiply the second relator by d®. The isomorphism G3 = G can be set by defining the mapping
¢:cr— a,d— c.

G4 =2 G2 =2 G1. Groups G2 and G4 have the same presentation. The first relator is a® = b3,
the second relator can be rewritten into the form a=2b71(ab~!) = 1. Simply left multiplicate the
second relator by b%. Now let us rewrite the presentation of G5 in the generators ¢ = ab~! and b.
The isomorphism G4 = (51 is obvious by setting ¢ : ¢ +— a,b — b.

Table 4.10: Isomorphism classes in Hy = Z3 X Z3
f G ¢G) | G/LG) #
(4,6,6,1,1,9 |(ab]a®>=0>=(ab)®) | Z AT(3,3,3) | 4
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Homology class Hy =74

Table 4.11: Original relators for H; = Z4

No. f G
113, 3,5,2,2, 4 |{ab|abtabb~1a=3p7T)
2| (4, 4,6, 1,5,5) | (a,b|b taba,b~ta=3b" 1)
31(3,3,9,2,2,8) | {ab]|b taba,b~ta=>b"1)
4| (4, 6,6, 3,5, 3) | {ab|ab ta"tb7t,b%2)
5/(5,5,7,2, 2,8 | (ab]|ab tab,b~ta"3b"1)
6| (4, 4,10, 3, 3, 7) | {a,b | b taba, b~ 1a=3b71)
716, 6,6, 1,5, 9 | (ab]|a* 2 a tba " ba"1b"1)
8| (3, 3,13, 2, 2,12) | (a,b | b taba,b"ta" b7 1)
9| (4, 6,10, 5, 7,13) | {a,b| ab tab,b=ta b~ ta)
106, 6,8, 3,5, 7 |{ab]|b taba,b=ta=3b"1)
11| (5, 5,11, 2, 2,12) | {a,b| ab"tab,b~ra=5b" 1)
12| (5, 5,11, 2, 6, 8) | {a,b| b taba,b=ta=3b~ 1)
13(5,7,9, 4,6, 4| (ab|ab a7, b%a?)
14|(5,7,9, 6, 4, 0 |{ab|btatba b ta"tb"1a?)
15(C7,7,7, 2, 6,10) | {a,b ]| ab=2ab~ta=3b"1 ab=ta"tba%ba=1b~1)

The first subclass was determined by GAP to be the group [12,1]. The center is Zy and the
factor of group by its center is S3, which can be easily checked in GAP. The fundamental group is
some extension of Zy by the group S3. Actually it is easy to derive the presentation of the group
A(3,2,2) in this case. Rewrite the presentation of G in generators ¢ = a~! and b. The relators are
b = cbc and ¢® = b%. Right multiply the first relator by b. The groups belonging into this subclass
are Gl, GQ, G4, G5, GG, G7, GlO, G12, G13 and G14.

The groups Gs, Gg and G711 are isomorphic to [20,1]. Similarly, the center is Zy. The factor of
this group by its center is dihedral group D1g. The presentation of the group A(5,2,2) was derived
in the similar way as in previous isomorphism class.

The fundamental group Gg can be determined in the similar way as extension of Zy by D14. The
GAP recognised it as the group [28,1]. The presentation of the group A(7,2,2) was derived in the
similar way as in previous isomorphism classes.

Rewrite the relators of Gis in the generators a and ¢ = ab~!. The first relator is in the form

ca—tc2a=%¢ = 1 and it is useful to rewrite it into the form c2a='¢?> = a*. The second relator
is in the form ca tec talc ta™?!

¢ = 1 after the substitution. Rewrite this relator to the form
a~tctadcla™! = ¢72. Set d = c?a~! and extend the relator to the form ¢ ta3c3c?a"! = ac™2.
Substitute d into the last form: ¢ 'a3c™3 = d~2. Use the first relator to express a® in the second
relator: ¢ !(a"'c?a=tc?)c™2 = d~? and extend the relator into the form ¢ 3c?a~lde™! = d=2.
Derive the final form of the second relator ¢ 3d%2c¢™! = d=2. It is easy to derive d®> = a> from the
first relator. Now, get back the generator a into the second relator: ¢ 3a3c™! = a=3. Rewrite the

relator to the final form: ¢® = a®c¢1a3.

Mutual non-isomorphism of these four groups can be checked in GAP by using low index sub-
groups procedures. Proof can be done by comparing the numbers of conjugacy classes of subgroups
up to index 12. We refer to Section 4.3 and Appendix C. Using the procedure LISubNum we get the
following results. There is 6 such conjugacy classes in G, 5 conjugacy classes in G3, 4 conjugacy
classes in Gy and 37 conjugacy classes in G15.Thus we have four isomorphism classes of fundamental
groups in the homology class Z,.
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Table 4.12: Isomorphism classes in Hy = Zy4

f G AG) | G/AG) | #
(3,3,5,2,2,4) | (ab]a®=0b>=(ab)?) Zs Dg 10
(3,3,9,2, 2,8 | (ab]a®=0b%=(ab)?) Zs Dip 3
( 3, 3,13, 2, 2,12) | (a,b | a”" = b? = (ab)?) Zs Dyy 1
(7,7,7, 2, 6,10) | (a,b]a*=0b%a"10%b>=0a3b"ta3) | ? ? 1

Homology class Hi = 74 X Zy4

Table 4.13: Original relators for Hy = Zy4 X Z4

No. f G
115, 5,5, 2,2, 2| (ab|ab2a"tb"2 ab ta’ba)
21 (5,5,7,2, 4,2 | (ab]| b ta?ba? a*b~2ab~?)
3|1 (5,5,9, 4,8, 4) | {(ab]|ab ta’ba, b ta"3b2a"1b"1)

Rewrite the relators of G in the following way. The first relator rewrite to a = b2ab? and left
multiply to get a? = (ab?)?. The second relator rewrite to b = a?ba? and right multiply to get
b? = (a?b)?. Hence the presentation of the group G is (a,b | a®> = (ab?)?,b* = (a?b)?).

G3 = Gg. Set the isomorphism G5 =2 G3 by map ¢ : a — a,b — b~1. It is easy to see that
relations are mapped onto the relations. In fact, rewrite the first relator to get b = a®ba? and right
multiply by b to get b2 = (a?b)?2. The second relator derive to the form a® = b%a~1b? and left
multiply by a=! to get a? = (a='b?)2. Thus G5 = {(a,b | a? = (a7 10?)%,b? = (a?)?)

The groups G7 and G2 are not isomorphic. To prove it, let us browse the normal subgroups
of low index of the respective groups. The group GG; contains three normal subgroups of index 10,
while the group G2 has only two such subgroups.

Remark.. Note that the group G is isomorphic to a subgroup of the group of isometries of E3. Set
a:lz,y, 2] — [+ 1,—y,—z] and B : [z,y,2] — [—z,y + 1,1 — z]. The isomorphism can be set by
mapping ¥ : a — «, b — (3. Using this identification one can prove that the respective 3-manifold
is Euclidean. Similarly, the group Gs = G5 is isomorphic to a subgroup of the group of affine
transformations of E2. Let o : [z,y, 2] — [ — 2y + 1, —y,—2z] and B : [x,y,2] — [~z,y + 1,1 — 2] be
transformations of the Euclidean space E3. The embedding of G35 into the group of transformations
can be set by mapping ¢ : a — «, b — 3. However, one can prove that the 3-manifold represented
by (5,5,7,2,4,2) is not Euclidean.

Table 4.14: Isomorphism classes in Hy = Zy X Z4

f G (G) | G/EG) | #
(5,5,5,2,2,2) | (a,b]a®=(ab?)? b* = (a’b)?) ? ? 1
(5,5,7,2,4,2) | (ab]|a®=(a"10?)2b* = (a®b)?) | ? ? 2
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Homology class H, = Zs

Table 4.15: Original relators for H; = Zs

No. f G
1] (4, 8, 8,5, 5,13) | (a,b| ab—*ab,ab~ta=tb"1a3)
21 (3,9,09, 4, 4,16) | (a,b | ab~*ab,ab"ta=tbta?)
3| (5, 5,11, 4, 8, 4) | (a,b | ab~ta"'b"ta%ba, a®ba=2ba?b=1)
401 C7,7,7, 4, 4, 8) | {(a,b| b ta"tbaba"t, b7 ta b?a b tab a0 L)

G2 = G7. Since the relators of G; and G2 are the same, the resulting relators for both groups
are easy to obtain e.g. from relators of G';. Rewrite the relators into the form a* = bab and b* = aba
and multiply the first relator by a from left and the second one by b from right.

Rewrite the presentation of G into the form G3 = (a,b | bab = a%ba® ba"2b = a"2ba"?)
and rewrite it in generators a and ¢ = a~2b. The presentation turns into Gz = (a,c | ca®c =
a?,a*c* = ca™?). Now substitute d = a?c™!. We get a presentation G3 = (a,d | d"'a"d 'a? =

a?,a?d 'a?d~'a® = d='). The first relator gives rise to the relator a” = d?. The second relator can
be rewritten into the form (da=2)% = d?. By using Lemma 4.8 the final form of presentation can be
set.

In the case of the group G4 the we first rewrite the relators in the generators a and ¢ = b~ ta~".
The first relator transforms into the form ¢? = a~'ca™'. Let us right multiply the first relator by
c to get ¢ = (a~'c)?. The second relator can be derived by a couple exchanges of the substring
a~lca™! inside it. We get the relator c*a3c3a* = 1. Since ¢® = (a71c)? is a central element in Gy,
we can simplify the second relator into a” = ¢, We have got the presentation G4 = (a,c | a” =
c 5,3 = (a"te)?).

Gz =2 Gy. To prove G3 = G4 is a bit tricky. Rename the generators in G4 to ¢ and d to get
Gy ={c,d| " =d 5 d® = (c'd)?) and set its images in ¢ : G4 — G35 = (a,b | a” = b> = (a72b)?)
to be ¢(c) = a=2 and ¢(d) = a~2b. This mapping is a homomorphism, because ¢ maps relations
of G4 onto the relations of G3. Since a=2 and a~2b generates the group G, the homomorphism is
surjective. To see it write a as a = a®a~7 = (a?)*b~2 in G'3. On the other hand, the homomorphism
¥ : G3 — G4 defined by mapping v¥(a) = ¢ *(ecd=")? and (b) = dc~" is surjective. Since ¢ = 11,
G3 =2 Gy.

Table 4.16: Isomorphism classes in Hy = Zs

f G (@) | G/CG) #
(4, 8,8,5, 5,13) | (a,b] a® =0b> = (ab)?) Z AT(5,5,2) | 2
(5, 5,11, 4, 8, 4) | (a,b|a"=b%>=(a"%b)3) | Z A1(7,3,2) | 2

Homology class Hi = Z5 X Zs

Table 4.17: Original relators for Hy = Zs X Zs
No. f G
11 C7,7,7, 2,2, 2 | {a,b|ab 2a"?b2ab~ 1, ab"ta?b?a®b~ 1)
21 C7,7,7, 4, 4, 4) | (a,b|ab ta b ta b ab=2 ab~ tabababla)
Rewrite the first relator of G into the form ab~'a = b%a2b? and left multiply it by a? to get

a’b~ta = (a?b?)%. The second relator of G can be rewritten into the form ba~1b = a?b%a? and right
multiplied by b2 to get ba=1b3 = (a?b?)2.
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In the presentation of G simply rewrite the first relator into the form ab=2a = b(ab)? and left
multiply by a. Similarly, rewrite the second relator into the form ba~=2b = (ab)?a and right multiply
it by it b.

G = G2 Y. It was not easy to found the isomorphism. Rewrite the presentations of the groups
as follows. The presentation of Gy is left in generators a and b, G; = (a,b | a®b~ta = ba=103 =
(a?b?)?). We rewrite the presentation of the group Gs in generators ¢ = a and d = b getting
Gy = (c,d | *d%c = dc™%d* = (cd)®). Set the homomorphism ¢ : a — c?d~1,b +— cd. This
homomorphism is an epimorphism. Set the reverse homomorphism to be v : ¢ — a?b?,b +— a?b™'a.
It can be checked that 1 is a homomorphism inverse to ¢. Thus ¢ : G; — G4 is an isomorphism.

Table 4.18: Isomorphism classes in Hy = Zs X Zs
f G (G) | G/AG) | #
(7,7, 7,2, 2,2 | (a,b]a®ta=ba"10> = (a®b?)?) | ? ? 2

Homology class H, = Zg

Table 4.19: Original relators for Hy = Zg

No. f G
1] (4, 6,10, 3, 5, 3) | (a,b ] ab~ta2b"1a?,b%a"2b"ta %)
2| (6, 6,8,5,3, 7 | {ab|ab ta"2b"ta,a " baba= b~ a " tba"tb 1)
313, 7,11, 4, 6, 2) | (a,b | ab ta"2b"ta? ab~3a’ba)
41 (5, 7,9, 4, 6,14) | (a,b | ab—2abab=2, ab"3a*)
5/ (5, 7,9, 6, 8,12) | (a,b | ab"ta"'b'a? ab~tabab—2ab)

Rewrite the presentation of the group G4. The first relator can be rewritten into the form
(ab=2)2ab = 1. Let us right multiply this relator by b=2 and rewrite it into the form (ab=2)=3 = b=3.
Thus the presentation is G4 = (a,b | a® = b3 = (ab=2)73).

In the case of the group G rewrite the first relator to the form a3 = ba?b and left multiply it by
a?. The second relator can be examined similarly by rewriting it into the form b3 = a?ba? and right
multiplying by b. The case of the group G3 can be processed in a similar way. The derivations of
relators are straightforward.

Gg3 = G1. The isomorphism G3 = G is set by mapping ¢ : a — a,b — b. The factor group by
the center can be derived by using Lemma 4.7.

Rewrite the presentation of the group G5 in the generators @ and ¢ = a~'b. The first relator
can be rewritten into the form ac = a=2c " 'a~'a? and then into the form ca®ca® = a® (by right
multiplying the relator by a*). The second relator transforms into the form (ca?)?ca=2ca?ca™2 = 1.
Rewrite now the group presentation in the generators a and d = ca? and left multiply the first
relator by a. We obtain Go = {(a,d | a* = (ad)? = d*a=*d?). Since (a?) is central, the element a~*
commutes with any other element of the group. Thus, the relators of G5 can be rewritten into the
form Gy = (a,d | a* = (ad)?, a® = d°).

Rewrite the presentation of the group G5 in the generators a and ¢ = ab. The final form of the
presentation is G5 = (a,c | a* = ¢?,ac " tac(ac™")%ac = 1). It follows from a* = ¢2, that ¢=! = ca™*
holds. Substituting it into the second relator and taking into the account that a~* is central we get
G5 = {(a,c| a* = %, a'? = (ac)?).

The groups G1 = (d, e | d° = e* = (d?e)?), G2 = {(a,b | a(ab)* = 1,a® =b°) and G5 = {(a,c | a* =

c3,ac tac(ac™1)?ac = 1) are isomorphic.

Ythanks to George Havas
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G2 = Gy Since (d?)® = €8 and (d?¢)? = e?, the elements of the group G» satisfy the relations
of the group G;. Thus there exists homomorphism ¢ : Gy — G, taking a — e and b — d2.
Since d = d°d~* = e*(d?)"2, d? and e generate G;. Thus ¢ is an epimorphism. A mapping
1 : Gy — Go can be constructed in a similar way. The central element a* commutes with ab and
with elements b and b3, as well. Thus (b*a=%)% = 1%a=8 = b5p=5 = b. The elements a and b3a—*
satisfies the relations of the group G;. Thus there exists a homomorphism % : G; — Ga, taking
e — a and d — b3a~*. The mapping ¢ is an epimorphism, as well. The following equalities hold:
d(Y(d)) = p(b3a™*) = de™* = d and ¢(¢(e)) = (a) = e. It follows that Vo € G; : ¢(¢(x)) = 2.
Since 1) is injective, it is an isomorphism as well.

G5 = G2 Rewrite the presentation of G5 in the generators a and ¢ = ab. The new presentation
is Go = (a,c | a* = 2,a® = (a7 '¢)%). Using the first relation we may replace the element c
by a*c . We get a® = (a"ta*c™1)® = a*°(a=1c™1)®. This means, that a=!? = (a7 1c71)® and
a'? = (ca)® = (ac)®, according to Lemma 4.8.

Table 4.20: Isomorphism classes in H, = Zg

f G ((G) | G/LG) #
(4, 6,10, 3, 5, 3) | (a,b | a® =b* = (a*b)?) Z At(5,4,2) | 4
(5,7,9, 4, 6,14) | (a,b|a®>=b3=(ab"2)73) | Z At(5,3,3) | 1

Homology class Hi = Zg X Zo

Table 4.21: Original relators for Hy = Zg X Zo

No. f G
11 C4, 4,4,1,1, 1| {(ab]|a®? a3 TabT)
214, 4,6, 1, 5, 1) <a7b|b26f4 ba='ba3, ab=tab=3)
31C3,3,9, 2,0, 2 | {ab]ab’a, ab’lab’i)’)
4| (3, 3,11, 2, 2, 2) | {a,b| ab 3ab~t,ab ta"3b71)
5| (5,5, 7,2,0,2) | {ab]|ab’a,b- ab Lab=1)
6| (5,5,7, 2,0, 8 | (ab]|a??ab tab ta b tab™t)
71(5,7,7,2,8,0) | (a b|ba’1ba ab~tab=?)
8| (4, 4,12, 3, 7, 3) | (a,b| ab’a,ab™tab™3)

The groups G1, G3, G5 and Gg are isomorphic. This fact was checked by the GAP. The group
was identified by the GAP as the group [24,11]. This group is a central extension of Zg by the Klein
group. The presentation can be derived from the presentation of G;. Rewrite the second relator
into the form a2 = b~ 'ab~! and left multiply it by a. Then rewrite the presentation of the group in
generators ¢ = a~! and b. Using Lemma 4.8 we get the presentation G1 = (c,b | ¢* = b = (cb)~2).

The remaining groups are isomorphic to the group [48,27]. This is a central extension of Zg by
the dihedral group Dg. The presentation of the group can be derived e.g. from presentation of G7.
Rewrite the relators into the form a® = b~'ab~! and b® = ab~'a. Multiply the relators by a or b=!
from left and right, respectively.

Table 4.22: Isomorphism classes in Hy = Zg X Zo

f G ¢(G) | G/KG) | #
(4, 4,4,1,1, 1 | (a,b]a®>=0b>=(ab)"?) | Zs Dy 4
(4, 4,6,1,5,1) | (ab|a*=0b%=(ab"1)?) | Zs Dg 4
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Homology class Hi = Zg X Zs3

Table 4.23: Original relators for Hy = Zg X Z3
No. f G

1] (4, 6,10, 5, 9, 3) | (a,b ]| ab3a?,ab~ta®*b~ta"1b"1a)
2| (4, 8,8,1,7,3) | {(ab|ab 3a? ab ta 2" ta"2b71)
3| (5, 5,11, 4, 2, 8) | (a,b | ab ta"2b"ta"2b" 1 ab~ta b a?b " ta)

41 (5, 7,9, 4, 2,2 | {ab]|ab 3a% a *ba"2ba"2b"?)

Rewrite the relators of Gy into the form a® = b3 and a='b7(a?b~1)? = 1 and left multiply the
second one by a>. Rewrite the presentation of G, in the generators a and ¢ = b~".

Relators of the group G2 can be rewritten in the following way. Rewrite the first relator into the
form =2 = b~ and the second relator into the form ab~!(a=2b71)? = 1. Left multiply the second
relator by a—3. Rewrite the presentation of G5 in the generators ¢ = = ! and d = b~ 1.

G2 = G1. The isomorphism of the groups G; and G2 can be set by mapping ¢ : a — ¢, b+— d.

Rewrite the relators of G3 in following way. First relator can be rewritten into the form
(ba?)?ba~t = 1. Next right multiply it by a3 and use Lemma 4.8 to get the new form. Left multi-
ply second relator by a® to get it into the form a® = (a?b~1)3. We have derived the presentation
G3 = (a,b | a® = (ba®)3 = (a®b™1)3).

G3 = G;. Rewrite the presentation of the group G3 in the generators a and ¢ = ba?. We
get Gz = (a,c | a® = ¢ = (a*c™1)?). It follows that a® = (a*c™!)® = (ac*c™!)® = (ac?)®. The
isomorphism G; = G3 can be set by mapping ¢ : a +— a,b+— c.

The presentation of G4 can be simplified as follows. Rewrite the second relator into the form
b? = (a=2b)%a~2 = 1 and right multiply it by b. The derivation of the first relator follows. Finally,
rewrite the presentation of G4 in the generators a and ¢ = a~2b.

G4 = G1. The groups G; and G4 are isomorphic by setting ¢ : a — a,b — c.

Table 4.24: Isomorphism classes in Hy = Zg X Z3
f G ¢(G) | G/C(G) i
( 4, 6,10, 5, 9, 3) | (a,b]a’=0b%=(a?)3) | Z AT(3,3,3) | 4

Homology class Hi = Z~

Table 4.25: Original relators for Hy = Zy
No. f G
4, 4,10, 3, 3, 3) | {(a,b| abta=%b"1a?, ab—2a’ba)
6, 6, 6, 3, 5, 5 | (a,b ] ab 2ab,ab ta b= ta"tbab,a*b"ta b~ tab"ta" b L)
3, 5,11, 4, 4, 2) | {a,b| ab=ta"%b"1a?, ab—2a>ba)
5 4, 6 (a,b |
5 4 (a,b |

B

, T, 7, 4, 6, 4) | (a,b] ab2ab,ab"ta"*b"ta"tbab,ab~ta b tab"ta" b~ ta)
, 5,11, 4, 2, 4) a,b | a®b~ta=2b= ab=2a%ba)
(5,7,9, 6, 6,14) | (a,b | ab~ta"tb"ta,ab"tabab—2ab)

All fundamental groups are isomorphic to a group of size 840. The center of this group is Zi4.
The factor of this group by the center is the alternating group As. The result was obtained by
the GAP . The group was recognised as the group [840,13]. The presentation of this group is
Gy = {a,b | a® = b> = (a?b)?). This presentation was obtained from the presentation of G; by using
techniques used in many previous examples.
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Table 4.26: Isomorphism classes in Hy = Z7
f G (G) | G/L(G)
(4, 4,10, 3, 3, 3) | (a,b]a®>=b>=(a?b)® | Z14 | 45

|3k

Homology class H, = Zg

Table 4.27: Original relators for Hy = Zg

No. f G
1]1C4, 4, 4, 1, 1, 5) | {a,b]| ab’a,abab=tab~1)
21 (3,3,7,2,2,2 | (ab|ab ta?b7 ab"2a?)
3|1C4, 4,6, 3,1, 5) | {a,b]|aba='b,ba’bab—'a)
4| (3, 38,11, 2, 2, 4) | {a,b| ab—ta®ba,ab ta=2b"1)
5/ (5,5, 7,0, 2,8 | (ab] a®b? abab=tab™1)
6| (5,5, 7, 2,4, 6)| (ab]|ab tab,b~ta"3b"2a"2p1)
715,85, 7,4, 4, 4) | (a,b]| b taba,b=ta"2b"2a3b7 1)
8| (5,5,9,2,6, 2 | {ab|ab a2t ab 2a?)
91(5,7,7,2,6,4) | {ab|ab %a,a tba b ta"tb71)
10| C 4, 4,12, 1, 5, 5) | (a,b | b~ a%ba?,ab"ta"2b71)
11| ( 4, 4,12, 3, 3, 3) | (a,b| ab™ a2~ ab~2a?)
12| ( 4, 6,10, 3, 3, 3) | {(a,b]| aba~'ba,ab 2a?)
13| ( 4, 8, 8, 1, 1,13) | (a,b | a®b*a,ab ta=3b"tab™!)
14 | ( 3, 3,15, 2, 2, 6) | {a,b | b"ta?ba?,a®b"ta" 4~ 1)
15| (5, 5,11, 2, 4,10) | {(a,b| ab"tab,b~ta=*b"2a=3p1)
16 | ( 5, 5,11, 4, 0,10) | (a,b| a®b* ab=ta" b~ tab™ 1)
17| (5, 5,11, 4, 4, 8) | {(a,b| b~ taba,b~ta=3b"2a"*p1)
8| C7,7,7, 2,2, 8) | {ab]| ab’a,abab tab™!)
9|7, 7,7, 2, 2,10) | {(a,b]| a®b*a,ab ra"3b"tab™!)

The first isomorphism class has the fundamental group of size 24, which was recognized by the
GAP as [24,1]. The center of this group is the cyclic group Z4 and the respective factor was
recognised by the GAP as the group Dg. The members of this class are Gy, G2, G3, G5, Gs, Gy,
G11, G12, G16 and Gig. The relators of the group can be obtained e.g. from relators of G3. Rewrite
the first relator into the form a = ba?b and left multiply by a? to get a® = (a?b)?. The derivation of
second relator is obvious.

The second isomorphism class is represented by the group [40,1] . The relators come from the
relators of the group G4. Rewrite the fist relator to the form b = a?ba? an right multiply it by b to
get b = (a?b)?. The second relator can be rewritten to the form a® = ba?b and left multiplied by
a? to get the form a® = (a?b)?. The members of this isomorphism class are G4, Gg, G7 and G1o.

The last finite fundamental group in the homology class is the group [56,1]. The relators of the
group can be derived e.g from the relators of G14. Rewrite the first relator into the form b = a?ba?
and right multiply it by b to get b> = (a?b)?. The second relator can be rewritten into the form
a® = ba*b. By left multiplying it by a* we get a” = (a*b)2. The isomorphism class contains the
groups G14, G15 and G17

G119 = G13. The groups G13 and G19 have the same presentation. Let us derive a presentation
of G13. Rewrite the second relator into the form a® = b=1(ab™1)? and left multiply it by a. The
derivation of first relator is obvious. Rewrite the group presentation in the generators a and ¢ = b1,
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Table 4.28: Isomorphism classes in H; = Zg
f ¢(G) | G/LG) #
(4, 4, 4,1, 1,5 | (ab]|a®=0b%=(a’b)?) Zy Dg 10
(3, 3,11, 2, 2, 4) | (a,b] a® =b? = (a®b)? Zy Dy 4
(3, 3,15, 2, 2, 6) | (a,b]a” = (a*)?, 0% = (a?b)?) | Z4 Dia 3
(4, 8,8,1, 1,13) | (a,b] a* = b* = (ab)?) Z AT(4,4,3) | 2
Homology class Hi = Zg X Zso
Table 4.29: Original relators for Hy = Zg X Zs
No. f G
1] C4, 6,8, 3, 9,13) | (a,b] b 3atba 1, b 3?7 1)
21 (3, 7,11, 2, 6, 2) | {a,b]| ab ta=3b"1 ab=5ab~1)
3| (s, 5,11, 2, 0,12) | {a,b| a*b? ab"tab~'abab™')

Rewrite the presentation of G as follows. The first relator rewrite into the form b2 = ¢~ 1ba™!

and right multiply it by b. The derivation of second relator is easy.

G2 = G1. To analyse the group Gy, rewrite the first relator into the form a® = b='ab™! and right
multiply it by a. The second relator can be rewritten into the form b° = ab~'a and left multiplied
by b~! to get the desired form. The isomorphism G5 = G is defined by setting ¢ : a ~— b, b +— a.

In the case of the group G5 rewrite the second relator into the form (ab™
relator by b=2 from right to get (ab~

13 = p=2,

generators a and ¢ = ab~!. We obtain the relators a? = ¢* = (a71c)%.

Gg3z = G1. The isomorphism Gg =

(1 can be set by taking ¢ : a — a,c— b.

Table 4.30: Isomorphism classes in Hy = Zg X Zo
f G (@) | G/C(G) #

(4, 6,8,3,9,13) | (a,b|a*=b"=(a"1b)?) | Z At(4,4,2) | 3
Homology class Hi = Zg

Table 4.31: Original relators for H; = Zg
No. f G

1]1C4, 4,6, 1,1, 7| {ab]|a’b? abab tab~ )

21(3,5,7,2, 4,2 | (ab]|ab” Ta=2p=1 ,ab=3

314, 4,8,3,1,7) <a7b|ab Lta=2b=1 ab~ a2b Lab)

41 C4, 4,8,3,7,3) | (ab|abta b a,a®ba)

5| (4, 6,8, 1, 1,11) | {a,b]| ab~tab?ab™!, a*b?)

6| (4, 6,8, 5,5, 3) <a7b|ab 2a2. b7 1a 1b*1a*1ba’1>

71C5, 7,7, 0, 2,10) | (a,b ]| a®b?, a1b 1ab*1ab*1>

8| (5,7,7,2,8, 2) <a7b|ab1b1*2b1 ab~*a 2)

9| (4, 6,10, 1, 1,13) | {(a,b | ab~tab?ab=t,b"1a"5b72)

10| ( 4, 6,10, 5, 5, 1) <a,b|aba Iba, ab~ 3 2}

11| (5, 5,11, 0, 2,12) | (a,b | a®b? abab~tab~1)

12| (5, 7,9, 2,8, 2 | {(ab]|ab” Tg=2p1 ,b2a=3)

13| (5, 7,9, 4,10,14) <a,b|ab 1ab2ab 1 a"*b3a=1)

14|15, 7,9, 6,10,12) | {a,b| a ,abab Lab)

Dab = 1. Multiply the
Then rewrite the relators of the group in the new
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The groups G1, G2, G3, Gy, Gg, G7, G190, G11, G12 and G4 were recognised by GAP to be
isomorphic to the group [72,3]. The center of this group is Zg. The factor of this group by its
center is the alternating group A4. The presentation can be derived from the relators of the group
(5. Rewrite the first relator to the form a? = b~'ab~! and left multiply it by a. The derivation of
the second relator can be easily done.

The presentation of the group G5 can be derived as follows. Rewrite the first relator into the
form (ab=1)%a = b=2 an right multiply the relator by b=1. The derivation of second relator is
straightforward. Now rewrite presentation of the group G5 in the generators a and ¢ = b1,

Write G = (a,b | a® = b*,a=2b"1(ab')2 = 1). Then left multiply the second relator by a®. The
final form of the presentation is Gs = (a,b | b* = a® = (b71a)3) (using Lemma 4.8).

Gg = Gg. Finally, rewrite the presentation in the generators b and d = b~'a. One can easily see
that the assignment b +— a, d — ¢ defines an isomorphism Gg — Gs.

Rewrite the relators of Gy into the form a® = =3 and (ab~!)ab? = 1. Right multiply the second
relator by b~2 and rewrite the presentation of Gy in the generators a and ¢ = b~".

In the case of the group G13 rewrite the presentation in the generators d = a~! and e = b1,
The relators are d* = e3 and (d~'e)?d~'e=2 = 1. Now right multiply the second relator by d® and
rewrite the presentation of the group in the generators d and f = dle.

G13 & Gg. Set the isomorphism G135 & Gy by taking ¢ : d — a, f — b.

Table 4.32: Isomorphism classes in Hy = Zg
f G (@) | G/C(G) #

, 6,1, 1,7 |{(a,b]a

, 8, 1, 1,11) | (a,b | a* = b® = (ab)?) Z AT(4,3,3) | 2

9, 4,10,14) | (a,b | a® = 5,3,3

>

>
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> B >

Homology class Hi = Zg X Z3

Table 4.33: Original relators for Hy = Zg X Z3
No. f G
11(6,6, 6,1, 1, 1) {a,b]|a’b>a*b"tab"tab™ 1)

There is only one 6-tuple in the class. It is easy to derive the presentation of the group G; by
rewriting the second relator into the form a=* = b=!(ab™1)? and left multiplying it by a. Rewrite
the presentation in the generators ¢ = a~' and b. By using Lemma 4.8 we get the presentation
G1 = {c,b | 2 =03 = (cb)73).

Table 4.34: Isomorphism classes in Hy = Zg X Z3
f G Q) | G/LG) e
(6,6,6,1,1, 1) (abla>=b=(b)3) |2 AT(3,3,3)

—_
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Homology class Hi = Zg

Table 4.35: Original relators for H; = Zq

No. f G
1] (4, 4,8, 1,1, 9 | (a,b]|ab tabab—t, a*b?)
21(3,7,7,2,6, 2 | {ab|ab ta?b"t ab"*a?)
3| (4, 4,10, 3, 1, 9) | (a,b | ab ta=2b~! ab~lababla)
41 (4, 6,8,3,9, 3) | (ab]|ab ta"tb"ta,a’ba)
5| (5, 7,9, 2, 0,12) | (a,b | ab~tabab™!,a*b?)

Only one type of the group appears in the homology class. It has be recognised by GAP as the
group [240,102]. The center is the cyclic group Z1g. The factor G/{(G) = S4. Derive the relators
of this group from the relators of G;. Rewrite the relators in generators a and ¢ = b~!. Rewrite
the first relator into the form (ac)?ac™! = 1 and right multiply it by . We get the presentation
Gy = {a,c| a* = ¢ = (ac)?).

Table 4.36: Isomorphism classes in Hy = Zqg
f G ¢(G) | G/KG)
(4,4,8,1,1,9 [a*=b2=(ab)? | Z1o | Ss

U3k

Homology class Hy = Z1g X Zs

Table 4.37: Original relators for Hy = Zyy X Zs

No. f G
1] (4, 4,8, 1,1, 1) (a,b]|ab3abt ab’a®)
2| (4, 4,10, 1, 5, 1) | (a,b | ab=3ab™1, ba=Cb)
31C3,7,9,2,0, 2 | {(ab]|ab tab! ab*a)
41 (4, 4,12, 1, 1, 5) | {a,b| ab ta®b~ 1, b7 ta 20 2abta™ 1)
54, 8,8, 3,3, 1) | {(ab]|a??a®b1a’3)
6| (5, 7,9,0,2,2) | {ab]|ab3ab"!, ab?a?)
71C5, 7,9, 0, 4,14) | (a,b | ab"3ab™,b%a"F)

The groups G4 and G5 are isomorphic to [40,11] . The factor G/{(G) = Zs x Z2. The relators
of this group are easy to derive e.g. from relators of G5. Rewrite the second relator to the form
a®b~3a3b~! = 1 and right multiply it by b=2. The derivation of first relator is obvious: a? = b~2.
Rewrite the presentation in the generators a and ¢ = b~1.

There are three isomorphic groups in the second homotopy class — G1, Gz and Gg. The GAP
recognises this group as [80,27] . This group has the center Zig and factor by the center is the
dihedral group Dg. The relators of this group follows up from the relators of G;. Rewrite the first
relator to the form b = ab~'a and right multiply it by b~'. The second relator can be rewritten
into the form a=* = b2. Rewrite this group in the generators ¢ = ¢! and b and use Lemma 4.8.

The groups G5 and G7 are isomorphic to the group [120,21] . Form the relators e.g. from the
presentation of Go. Rewrite the second relator to the form b = ab~'a and right multiply it by b=!.
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Table 4.38: Isomorphism classes in Hy = Z1g X Zo

f

G ((G) | G/L(G)

b 1, 1)

>

, 3, 1)

>

(4, 4,8,1 (a,b]a*=0b
(4, 4,10, 1, 5, 1) | (a,b]a® =02 = (ab™1)?) | Z1o | D12
(4,8,8,3 {a,b|a®=b

2 = (ab)*2> ZlO Dg

2 _ 2 (&3b3)2> ZlO D4

N)N)CO:H:

Homology class Hi = Z11

Table 4.39: Original relators for H; = Z;

No. f G
1] (4, 4,10, 1, 1,11) | {a,b | ab~tabab=1,a’b?)
21 (3,7,9, 4, 8,14) | {(a,b| ab~tab?, a®*b=3a3)
3| (4, 4,12, 3, 1,11) | (a,b | ab~ta=*b~! ab~tabab'a)
41 (4, 8,8,1,9,13) | (a,b|ab %ab,a™*b3a" 1)
5| (6, 6, 8, 3,11, 3) | (a,b]| ab 'a b a,a®b’a)

Only one fundamental group appears in this homology class. The GAP identified it as the group
[1320,14]. The center of this group is the cyclic group Zss. The factor of the group by its center
is the alternating group As. To obtain the relators for this group is suitable to use the relators of
G1. Rewrite the second relator into the form (ab~1)2ab = 1 and right multiplicate it by b~2.

Table 4.40: Isomorphism classes in Hy = Z11

f G Q) | G/LG) | #
(4, 4,10, 1, 1,11 [ (a,b|a® =b"2= (ab 1)3) | Zoy | A5 5

Homology class Hi = Z15

Table 4.41: Original relators for H; = Zq2

No. f G
1] C4, 4,10, 1, 5, O | {a,b ] b Ta"1b72ab~ 1, aba=b)
2| (6, 6, 6, 1, 3, 7) | {(a,b| ab’a,abab~tab=ta"tb"tab™ 1)
3| (3, 3,13, 2, 2, 8) <a,b|b La=th=2ab~1 aba—4b>
41 (4, 4,12, 1, 1,13) | (a,b | ab~tabab=t, b~ 1g=6p 1y
5/ (6, 6, 8,5, 1, 7 <a7b|aba’1b bagbab Labab—'a)
6| (3, 7,11, 4, 8,16) | {a,b| ab~tab? a?b~3a)
715, 7,9, 6,8, 2 | (ab|a*2a,ab " a"3b" a)

The groups Gp, G2, G3, G5 and G7 are isomorphic to the group [60,2] . The center of this
group is the cyclic group Zg and the factor of the group by its center is the dihedral group Dig.
The relators of this group can be derived e.g. from the presentation of the group G7. Rewrite the
second relator to the form a® = b~ 1a2b~! and left multiply this relator by a. The derivation of the
first relator is straightforward.

Rewrite presentation of the group G4 as follows: The second relator rewrite into the form
(ab=1)2ab = 1 and right multiply it by 6=2. Rewrite the first relator into the form a® = b2
Then rewrite the presentation in the generators a and ¢ = b=1. We get G4 = (a,b | a® = ¢? = (ac)?).
Finally, rewrite the presentation in generators a and d = ac getting G4 = {(a,d | a® = d® = (a=1d)?).
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Gg = Gy4. In the case of the group Gg we rewrite the relations as follows. Rewrite the first
relator into the form 5% = a~'ba~! and right multiply it by b. The derivation of the first relator is
simple. The isomorphism G4 = Gg can be set by mapping ¢ : a — a,d — b.

Table 4.42: Isomorphism classes in Hy = Zq2
f G ¢(G) | G/CG) #
(4, 4,10, 1, 5, 7) | (a,b]a®>=b2=(a®b~1)? | Zs Dyo 5
(4, 4,12, 1, 1,13) | (a,b|a® =02 = (a'b)?) | Z A1(6,3,2) | 2

SIS
I

Homology class Hi = Z3

Table 4.43: Original relators for H; = Zq3

No. f G
1] (a4, 6,10, 7, 3,15) | {a,b|ab ta=3b"ta,ab—3a?)
2| (6, 6,8, 3,1, 9 | (ab]|a®? abab tab tabab~!)
3| (3, 5,13, 8, 4, 2) | {a,b| ab ta=3b"ta,ab—3a%)

All groups in the homology class were determined to be isomorphic to the group, which GAP
knows as [1560,13] . The center of this group is the cyclic group Zog and the factor of the group
by its center is G/{(G) = As. The relators of the group were obtained from the presentation of Gs.
Rewrite the first relator into the form a® = b='a?b~'and left multiply it by a?. The derivation of
the second relator is easy.

Table 4.44: Isomorphism classes in Hy = Zq3

7 C (G [ GG [ #
( 4, 6,10, 7, 3,15) | (a,b ]| a® =b> = (a®b~1)?) | Zog | A5 3

Homology class Hi = Zy4

Table 4.45: Original relators for H; = Z4

No. f G
114, 6,6, 1,7, 1) {(ab|abta3b71 a7 3)
2| (3, 5,11, 2, 4, 2) | (a,b|ab ta=3b" !, ab %ab™ 1)
3| (5, 5,9, 2, 0,10) | {(a,b]| a®b? ab~tabtabab=!)
41 (5, 7,9, 0, 2,12) | {(a,b]| a®b? abab~tab~tab=!)
5|1C7, 7, 7,0, 2,10) | {(a,b | a?b? a b tab~tabtab™ )

Only the group [336,115] appears in this homology class. The center of the group is the cyclic
group Zi4, the factor by its center is S4. The relators of this group can be derived e.g. from Gj.
Rewrite the first relator into the form a® = b~ 'ab~! and left multiply this relator by a. The first
relator can be easily transformed to the required form.

Table 4.46: Isomorphism classes in Hy = Z4

f G ¢(G) | G/LG)
(4,6,6,1,7, )| (ab]a*"=0=(ab1)?) | Z1s | Su

U3k
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Homology class Hy = Z14 X Zs
Table 4.47: Original relators for H1 = Zq4 X Zs
No. f G
1] (4, 4,12, 1, 1, 1) | (a,b] ab=3ab~t,a"?)

This group was identified by the GAP as the group [168,29]. The center of this group is the
cyclic group Zi4. The factor of the group by its center is isomorphic to the group D12. The relators
are easy to derive: rewrite the first relator into the form b3 = ab~'a and right multiply it by b—!.
The second relator can be easily derived. Rewrite the prebentation in the new generators ¢ = a !

and b and use Lemma 4.8. We get G1 = {c,b | ¢® = b% = (cb)2).

Table 4.48: Isomorphism classes in Hy = Zq4 X Zo

f G (G) | G/CG) | #

(4, 4,12, 1, 1, 1) [ (a,b]a® == (ab)™2) | Z1a | D12 1
Homology class Hi = Z5

Table 4.49: Original relators for H; = Zq5
No. f G

11¢3,7,7, 2,2, 2 | {(a,b]|ab3a? a %ba"2b2)

21 (5,5,7,4, 2,4 (ablabta 1b La=tb=1 ab=2ab'a)

3|4, 4,10, 1, 1, 5) <a7b|ab 1 *2b 1ab 1 a3baba)

41 (4, 6,8,1,5, 3 | (ab]|ab 2a% ab™ lg-2h- 1a—2b—1>

5/ (6,6, 6, 1, 1, 9 (a,b|ab3a2 aanb Ltab=tab—1)

6| (6, 6, 6, 3, 3, 5) (a,b|ab 1 _1b Lab=2 ab~tabab—la)

715, 7,7, 4,4, 2) | {a,b|b2a3b7! ab™ 20- 152 )

8| (5, 5,11, 2, 6, 2) | (a,b]| ab” 3a3 ab-lab~la~3b- 1y

The group [120,15] is the group to which the groups G1, G2, G3, G4, G and G7 are isomorphic.
The center of this group is the cyclic group Zig. The factor of the group by the center is the
alternating group A4. The relators of this group were derived from the group G; in the following
way: rewrite the second relator into the form b2 = a~2ba~? and right multiply it by b. The derivation
of the second relator is clear.

In the case of the group G5 rewrite the second relator into the form b=2 = (ab~!)3a and right
multiply it by b. Then rewrite the presentation in the generators a and ¢ = ab~!. Then use Lemma
4.8 to get the presentation G5 = (a,c | ¢* = a® = (ca™1)3).

For the group Gg rewrite the relators following way: derive the second relator to the form
a® = b~!(ab=1)? and left multiply it by a. The derivation of the first relator is easy to do.

Gg = Gg. The isomorphism Gg = G5 is set by ¢ : a — ¢,b— a.

Table 4.50: Isomorphism classes in Hy = Zq5
f G ¢(G) | G/KG) i
(3,7,7,2,2,2 [ (a,b]a®>=b3=(a"?b)?) | Z1o | A4 6
(5, 5,11, 2, 6, 2) | (a,b]|a*=b3=(ab"1)3) | Z AT(4,3,3) | 2
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Homology class Hi = Z

Table 4.51: Original relators for H; = Zqs

No. f G
1]1C4a, 4,6, 1,1, 1) {ab]|ab®a® ab 3ab~ 1)
2| (4, 4,8,1,5,1) | {ab|ab tab=3 b*a"5)
31(3,5,9,2,0, 2 |{ab]|ab’a,abtab ta?)
41 (3, 3,13, 2, 0, 2) | {(a,b]| ab®a? ab=3ab~t)
5/(5, 7,7, 0, 2,2 | (ab]ab*a® b 2ab"tab™1)
6| (5, 7,7,0, 4,12) | {a,b | ab=3ab™!, ba=5b)
71 Ce6, 6,8, 1, 1,11) | (a,b | a*t?,ab?ab"Lab"tab™t)
8| (3, 3,15, 2, 2, 2) | {a,b| ab 3ab™!,ba="b)
9| (5, 5,11, 2, 0, 2) | {a,b| ab*a® ab=3ab™ 1)
10| (5, 7,9, 2,8, 0 | {(a,b]|ab tab=3 ba"1ba*)

The group [48,1] is isomorphic to groups G1, Gs, G4, G5 and Gg. This group has the center
Zsg and the factor by the center is the group S3. The relators of this group can be derived from the
presentation of the group ;. Rewrite the second relator into the form b3 = ab~'a and right multiply
this relator by b~!'. The derivation of the first relator is simple. Rewrite the presentation in the
generators ¢ = a~! and b and use Lemma 4.8 getting the presentation G1 = (a,b | a®> = bv* = (ab)~2).

The groups Ga, Gg, Gs and G1¢ are isomorphic to the group [80,1]. The center of this group
is Zg. The factor by the center is the dihedral group D1g. The relators of this group can be derived
from the presentation of the group G. Rewrite the first relator into the form 5% = ab~'a and right
multiply this relator by b~ 1.

In the case of the group G7 the relators can be derived in the following way: rewrite the second
relator into the form b=2 = (ab~!)3a and right multiply it by b~!. Then rewrite the presentation in
the generators a and ¢ = ab™!.

Table 4.52: Isomorphism classes in Hy = Zqg
f G/(G)
B 6, 1, 1, 1) < b|a3:b2=(ab)_2> Zg D6
, 8, 1,5, 1) | {ab]|a®=0b%=(ab"1)?) | Zsg Dy
8, 1, 1,11) [ {(a,b|a*=b*=(a"1)3) | Z At (4,4,3)
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Homology class Hy = Z1g X Zs

Table 4.53: Original relators for Hy = Zqg X Z2
No. f G
1] Ca, 8,8, 1,1, 1) {ab]|b%a*? ab "ab 1)

The derivations to obtain the relators of the fundamental group follow. Rewrite the second
relator into the form b° = ab~'a and right multiply this relator by b~!. First relator gives a=* = b*.

Table 4.54: Isomorphism classes in Hy = Z1g X Zo
f G (G) | G/CG) #
(4,8,8,1,1, 1) |(abla*=0bt=(ab)™?) | Z AT(4,4,2)

—_
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Homology class Hi = Zi7

Table 4.55: Original relators for H; = Z7
No. f G
1] 3, 7,11, 4, 2, 2) | (a,b] ab~ta?b?a,a®b=3a?)
2| (5,7,9, 6,4, 4) | {(a,b|ab 2a"b?, ab"tabab, a®b~2a%b2a)

Both fundamental groups have order 2040 . They cannot be identified in GAP as SmallGroup(n,k)
because their size go over the upper bound of the size of groups included in the GAP library. The
center of both groups is isomorphic to the cyclic group of order 34. The factors of each group by its
center are isomorphic to the alternating group As.

Since there exists a unique involution in both groups, generated by 17th power of generator of
the center, the groups can be factorised by this central subgroup of order 2, which means to add
b%1 =1 or b3* = 1 to the presentations respectively. Factorisation by this involution gives the group
H = Z17 x A5 in both cases. Thus the groups are some central extensions of Zs by the group H.

On the other hand, since the groups are finite, the associated manifolds are factors of S3 by
fundamental groups. There exist unique central involution in S® [34], which identifies antipodal
points in S — §3/(r) = PP3. Since the group Aj is a simple group, the involution 7 coincides with
the unique central involution. Thus the extension of the group H is unique and G; = Gs.

We derive the presentation of the group from the presentation of G;. We rewrite the first
relator into the form a?b?a?b~! = 1 and right multiply it by b3. The derivation of second relator is
straightforward.

Table 4.56: Isomorphism classes in Hy = Zq7
f G (@) | G/C(G)
(3, 7,11, 4, 2, 2) | (a,b]| a® =b> = (a®b?)?) | Z34 | A5

RS

Homology class Hi = Zg

Table 4.57: Original relators for H; = Zqg
No. f G
1] (4, 6,10, 3, 9,15) | (a,b ] b 3a"tba= 1,6 3a®b71)

The relators of this fundamental group are easy to obtain rewriting the first relator to the form
b3 = a~'ba~! and right multiplying it by b. The derivation of the first relator is clear.

Table 4.58: Isomorphism classes in Hy = Zqg
f G ¢(G) | G/CG) #
(4, 6,10, 3, 9,15) | (a,b|a®> =b1=(a"10)?) | Z AT(5,4,2) | 1
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Homology class Hi = Zq9

Table 4.59: Original relators for H; = Zg
No. f G
11C4,6,8, 1,7, 1) | {ab|abtab=* abTa=?71)
2|1 (5,7,9, 4, 0,14) | (a,b | ab~ta*b~' ab~tab?)

Both groups are of the order 2280. Unfortunately, GAP cannot deal with the groups of such big
orders. However, the groups are isomorphic.

As concerns the group G, rewrite the first relator into the form b* = ab~'a and right multiply
it by b. The second relator can be derived in a similar way rewriting it into the form a* = b=tab™?2
and left multiplying it by a.

To determine the relators of the group G rewrite the first relator of the fundamental group into
the form a* = ba~'b and right multiply it by a~'. The second relator can be rewritten into the form
b* = a~'ba~"' and left multiplied by b.

G2 = G1. The isomorphism G2 22 G; can be constructed by setting ¢ : a — b,b +— a.

Table 4.60: Isomorphism classes in Hy = Zq9

7 a (G [G/AG) [ #
(4,6,8,1,7, 1) (a,b|a®=b3=(ab1)?) | Zss | 45 2

Homology class Hi = Zog

Table 4.61: Original relators for H; = Zog

No. f G
1] (4, 4,10, 1, 1, 7) | {a,b | bab®>a~1b, aba’b)
21 (4, 6,8,1,1,3) | (ab]|ab ta®b™!, aba®b?a)
31C3,7,9, 2,4, 2 |{ab]|aba,ab 2ab"2a?)
4| (4, 4,12, 1, 1, 9) | {a,b| ab ta b tab™!, a®ba?ba)
5|1 (5, 7,9, 2,4, 4) | {(a,b|ab ta"2b"tab=2 ab~ta%baba)
6| (5, 7,9, 4,10, 4) | {a,b| ab ta*b?a,b"ta b7 a?b " ta"1b72)
715, 7,9, 6,10,14) | (a,b | ab~2a"'b"2%a,ab"tab*ab"1a?)

The groups G1, Go, G3 and G4 are isomorphic to the group [60,1] . The relators of this group
can be derived e.g from the presentation of G'3. Rewrite the second relator to the form a=2 = (ab—?)?
and the first relator to the form 3 = a~2. Rewrite the group presentation in the generators b and
c=a"l.

The groups G5, Gg and G7 are isomorphic. Set the automorphism a of the group Gg to be
a:a— b b1 — a. Rewrite the second relator into the form a2 = b~ tab?ab™ = b~ 1b%ab?b~3 and
substitute the first relator into the second. The new presentation is Gg = {(a,b | a®> = b%ab?, a® =
ba=3b3).

Rewrite the presentation of the group G7 as follows. Rewrite the first relator into the form
a? = b%ab®. Substitute the first relator into the second as above. Thus G7 = {(a,b | a? = b?ab?,a® =
ba=3b3).

Gr7 =2 Gg. The isomorphism G7 22 G¢ can be defined by setting ¢ : a — a,b — b.

In the case of the group G5 the rewriting the presentation in the generators a and ¢ = ba is used.
The new relators are a’c 'a? = ¢2 and a’c 'a"'cta?c tac™' = 1. Rewrite the presentation in
the generators a and d = ¢~!. Now substitute the first relator into the second in a similar way as
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in the case of G to get a?d~'d®a~'d = 1. Rewrite the relator into the form d—2 = a~'da?da~"
a"tda’da?a=3 = a='d*a=3. We end with the presentation G5 = (d,a | d*> = a®da?, d® = ad—3a3).
G5 = Gg. The isomorphism G5 = Gg can be set by mapping ¢ : d — a,a — b.
The groups G; and G5 are not isomorphic. We prove it by checking the list of low index normal
subgroup up to index 12. The factors by these subgroups follow:

gt: [ 1,11 (2,11 (4,11 ([5,1]1[10,2]10[6,11T1[12,11,
gb: [ 1,11 [2,1]1[4,1]1[5,1]1T [10,2].
Table 4.62: Isomorphism classes in Hy = Zog
f G Q) | G/CG) | #
(4, 4,10, 1, 1, 7) | (a,b|a®=b% = (a®h)?) Z1o | Ds 4
(5,7, 9, 2, 4, 4 b| a?=b%ab? a® = ba=3b3) | ? ? 3

Homology class Hi = Zo;

Table 4.63: Original relators for Hy = Zo

No. f G
11C4, 6,6, 1,1, 1) {ab]ab3a® a*b"tab 1)
2|1 (5,5,9, 2,0, 2| (ab]aba,ab"tab ta®b1)
3|Ce6,6,8,1,9, 1| (ab|ab3a* ab tabta"*b"1)
41| (3, 5,13, 2, 0, 2) | (a,b| ab3a? ab=*ab~ 1)
5(1C7,7, 7,0, 2,2 | {(ab]|ab?a® b 2ab"tab tab~ 1)

All groups except G3 are isomorphic to the group [168,22]. This group has the center Z14 and
the factor by the center A4. The relators of the group are easy to derive from the presentation of
the group G1: rewrite the second relator into the form a* = ba='b and left multiply it by a~!. The
first relator can be rewritten into the form a® = b~3. Rewrite the presentation in the generators a
and ¢ = b~! and use Lemma 4.8 to derive the final form of the presentation.

The case of the group G3 can be solved as follows. Rewrite the second relator to the form
a* = b~!(ab=1)2. Left multiply this relator by a. The derivation of the first relator is obvious.

Table 4.64: Isomorphism classes in Hy = Zo3

f G ¢(G) | G/CG) #
(4,6,6,1,1,1) | (a,b|a®>=b=(ab)™2) | Zus | A4 4
(6,6,8,1,9,1) | (a,b|a®=0b=(ab1)3) |7Z AT(5,3,3) | 1

Homology class Hi = Zos

Table 4.65: Original relators for H; = Zao

No. f G
1] (4, 6,10, 5, 1, 1) | (a,b] ab=*a?,ab~1a?b3a)
2| (C4,8,8,1,9, 1) (ab|ab ta*t ab=Pab™ 1)
3|1C6,6,8,1,1, 9 | (ab]a??a®b,ab ta b tab tab~ 1)
41 (€3, 7,11, 2, 2, 2) | {(a,b] ab—3a®, ab*a"1b%a?)

The groups G1, G3 and G4 are isomorphic to [528,87]. The center of this group is the cyclic
group Zsos. The factor by the center is the symmetric group S4. The relators of this group can be
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derived from the relators of the G;. Rewrite the second relator into the form b = a~2ba~2 and left
multiply this relator by b. The derivation of the first relator is clear.

The relators of the group G5 can be derived as follows. Rewrite the first relator into the form
a* = b~ 'ab~! and left multiply this new relator by a. The second relator can be derived in a similar
way. Rewrite it into the form b®> = ab~'a and right multiply this relator by b=!.

Table 4.66: Isomorphism classes in Hy = Zoao

i € (@ (e [ #
3
1

6, 10, 5, 1, 1) | (a, =03 =(ab2)?) | Zao | Su
, 8,8, 1,9, 1) |(ab|la®=b=(a1?)|2Z AT (5,4,2)

Homology class Hi = Zoy

Table 4.67: Original relators for Hy = Zoy

No. f G
1] C4, 4,10, 1, 1, 1) | {a,b] ab=3ab~ 1t ab’a?)
21 (5,5,9,2,2,2 | (ab]|ab2a2072 a%ba®b1)
31(5, 7,7, 2,2, 4) | {(ab|a2"ta b a"%b,b’a " b%aba,ab 2ab " a?b 1)
41 (4, 4,12, 1, 5, 1) | {a,b | ab=3ab™!,ba""b)
5| (4, 6,10, 1, 7, 1) | (a,b| abtab=*, a’ba~1b)
6| C3,9,9,0,2, 2 | {(ab]|ab3ab"t ab®a?)
715, 5,11, 2, 2, 8) | (a,b | ab~ta*ba® ab e b a2 ta b7 Y)
8| (5, 5,11, 2, 4, 2) | {(a,b]| ab ta®ba?, a*b=2ab=2)
91 (5, 7,9,2,2, 4| (ab]ab 2a"'b2 aba?ba®b~1)
10(C7, 7,7, 2,2, 86) | {ab]|ab2ab ta?b~ a b ta 0" ta b ta" ba1b)

The groups G7 and Gg are isomorphic to the group [120,2] . The center of this group is the
cyclic group Zio and the factor group by the center is the dihedral group D1g. The presentation of
this group can be derived from the presentation of the group G;. Rewrite the presentation in the
generators a and ¢ = b~!. Rewrite the first relator to the form ¢® = a~'c 'a™! and left multiply
it by ¢7!. The derivation of the second relator is simple. In this way we get the presentation
Gy = {a,c| a® =c? = (ac)72).

The group G4 is known as [168,4] in GAP. The center is the cyclic group Z12 and the factor
group by the center is Dq4. The presentation can be obtained by rewriting the first relator into the
form b = ab~'a and right multiplying it by b~!. The second relator can be rewritten into the form
a” = b

In the case of the group G5 rewrite the relators into the form b* = ab~'a and a® = b~ tab~ .
Then right multiply the first relator by b~! and left multiply the second relator by a. The center of
this group is Z and the factor by the center is the group A*(6,3,2).

Rewrite the the presentation of the group G into the final form Gy = (a,b | a = b%a?b? b =
a3ba?).

Now we shall deal with the group Gg. Rewrite the second relator into the form (a2b)® = b2
by right multiplying it by b%. Rewrite the first relator into the form a = b%ab? and substitute the
second relator instead of b%. In this way the first relator transforms into a = (a2b)%a(a?b)3. Rewrite

the presentation of the group Gy in the generators a and ¢ = a?b. The second relator is now ¢® =

a~2ca~2c and can be rewritten into the form ¢ = a?c?a?. We get G = {(a,c | a = c3ac?, c = a®c?a?).

Gg = G2. The isomorphism Gy — G5 can be set by mapping ¢ : ¢ — a,a +— b.
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The presentation of the group G3 can be derived in the following way. Rewrite the first relator
into the form bab = a=2ba~2 and left multiply this relator by a to get (ab)? = a~*ba=2. Rewrite the
second relator into the form aba = b=2ab~? and right multiply it by b to get (ab)? = b=2ab~!. Third
relator can be derived from previous two. Rewrite the presentation of the group in the generators
a and ¢ = ab. The first relator is ¢ = a~2ca™2. The final form is ¢ = a?c?a®. The second relator

is ¢ = ¢ tac 'a’c a. It follows from the first relator that we can replace the last appearance
of ¢! by ¢! = a72c 2072 in the second relator. In this way we get ¢ = ¢ lac 'a?c la =
ctac ta?(a"%c2a7%)a = ¢ tac 3a™!, hence we have a = c®ac®. The group Gz = (a,c | ¢ =

a’c?a?,a = acd).

G3 = Ga. The isomorphism G — G can be set by mapping ¢ : ¢ — a,a — b.
Rewrite the presentation of the group G7 in the generators a and ¢ = ba~!. The first relator

turns into ¢ = a®ca®. The second relator is a =2 = ca?c?a®c. Replacing the left-hand side of the
2.2 2

second relator by a=2 = ca’c™! we get the final form a = c?a?c?. Thus we get the presentation

G7 = {a,c| a=c*a®c? c = a3ca®).

G7 = Ga2. The isomorphism G7 — G can be set by mapping ¢ : a — a,c — b.

Rewrite the presentation of the group Gs into the form Gg = {a,b | a=3 = ba®b~1,a* = b2a~1b?).

G110 & Gg. The groups Gg and G1g are isomorphic. To prove this fact, derive the relators of
G1o at first. Rewrite the presentation of the group G1¢ in the generators a and ¢ = ba. The second
relator is ¢ =3 = ac ta%c la. The first relator is a?c tac ta?c ladc™! = 1. Let us substitute the
second relator into the first: a’c tac la’c ta’c™! = a’c (ac ta’c ta)a’c™! = a?c e 3a? e =
a’c *a%c™! = 1. The final form of the first relator is ¢* = a?c~'a?. Use this form in the derivation
of the second relator: ¢~ = ac'a?c™la = ac™!(a’c 'a?)a™! = ac lc*a™! = ac’a~!. Hence we
have a presentation Gip = (a,c | ¢* = a®?c™'a?, ¢ 3 = ac®*a™'). The isomorphism G19 — Gy can be
set by mapping ¢ : ¢ — a,a — b.

The groups G1, G2, G4, G5 and Gg are mutually non-isomorphic which can be checked by using
GAP. The result follows from the examination of low index normal subgroups of these groups up to
index 12. The factors by these normal subgroups follow.

gt : [1,11[2,11[0[3,111[04,111[8,1110[6, 2]
(12, 2] [ 10, 117,

g4 : [ 1,11 [2,11[4,11[3,11[6,211012,2110[8,11,

gb: (1,112,111 [10,1]1[4,1]1([s8, 11,

g9 : [1,11 (2,114,118, 11 1[3,111[0[6,21TIl12, 2]
[ 12, 31,

gio: [ 1,11 [2,110[4,11°[8,110[3,111[0[6,21Tl112, 2]
[10, 11 [ 12, 31.

Table 4.68: Isomorphism classes in Hy = Zoy

f G ¢(G) | G/C(G) #
(4, 4,10, 1, 1, 1) | (a,b] a® =b? = (ab)~?) Z12 | D1 2
(4, 4,12, 1, 5, 1) | (a,b|a”" =b*> = (ab™1)?) Zya | D 1
(4, 6,10, 1, 7, 1) | (a,b|a® =0 = (ab1)? Z A1(6,3,2) | 1
(5,5,9,2,2,2 | (ab]|a=>b%b?b=aba’®) ? ? 4
(5, 5,11, 2, 4, 2) | (a,b| b= a%ba® a* = b2a"10?) | ? ? 2
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Homology class Hi = Zog

Table 4.69: Original relators for H; = Zog
No. f G
11C4, 6,8, 1,1, 1] {ab]|ab *ab~ 1 ab®a’)
21 (5,7,9, 2,0, 2| (ab]ab*a,ab=tab tab1)

Both fundamental groups in the homology class were identified by the GAP as the group
[624,131]. The center of this group is the cyclic group Zsg and the factor group by the center
is the symmetric group S4. The relators of the fundamental group can be derived e.g. from relators
of the group G. Rewrite relators to the form a=* = b and b* = ab~'a. Right multiply the second
relator by b=!. Then rewrite the presentation in the generators ¢ = a~! and b and use Lemma 4.8
to get the final form of presentation.

Table 4.70: Isomorphism classes in Hy = Zog
f G ¢(G) | G/LG)
(4,6,8,1,1, 1) | (a,b]a*=b3=(ab)™2) | Zas | Sa

RS

Homology class Hi = Zoy

Table 4.71: Original relators for Hy = Za7

No. f G
1] Ca, 6,10, 7, 1, 1) | {a,b | a’b> a*b"1a’b1a)
2| (6, 6,8, 1,1, 3) | (a,b]| aba®b?a,a®b tab~tab™!)

The fundamental groups are isomorphic to the group [216,3] . The center of this group is the
cyclic group Zis, the factor of this group by its center is the alternating group A4. The relators can
be derived from the relators of G;. Rewrite the relators to the form a3 = b2 and a® = ba—2b. Right
multiply the second relator by a~2. Then rewrite the presentation in the generators a and ¢ = b1,

Table 4.72: Isomorphism classes in Hy = Zo7
f G Q) | G/LG) | #
(4, 6,10, 7, 1, 1) | (a,b|a® == (a’b)2) | Z1s | A4 2

Homology class Hi = Z3;

Table 4.73: Original relators for H; = Zg3;
No. f G
1] Ca, 6,10, 1, 1, 1) | {a,b|ab *ab~ 1, ab?)

Since this group is of order 3720, it is not present in the GAP catalogue. Derive the relators
of the fundamental group by rewriting the presentation in generators ¢ = a~! and b. Then rewrite
the second relator to the form b* = ¢~ 'b~1c¢™! and left multiply the new relator by b~! to get
b3 = (cb)~2. The derivation of the first relator is easy to do.

Table 4.74: Isomorphism classes in Hy = Zs;
f G (G) | G/EG) | #
(4, 6,10, 1, 1, 1) | (a,b]a® =b%=(ab)™2) | Zga | 45

—_
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Homology class Hi = Zs3

Table 4.75: Original relators for H; = Zs3
No. f G
11C6,6,8, 1,1, 1) | {a,b]|ab3a® ab %ab tab™ 1)
Rewrite the presentation in the generators ¢ = a~! and b. Rewriting the second relator to the
form b* = (¢71b71)%2¢~! and left multiplying by b—! we get the final form of the relator: b3 = (cb) ™3
The derivation of the first relator is obvious.

Table 4.76: Isomorphism classes in Hy = Z33
f G (G) | G/C(G) e
(6,6,8,1,1, 1) | (ab]a*=b=(ab)3) | 2Z AT(3,3,3)

—_

4.7.2 Infinite homology groups

Homology class Hy = Z

Table 4.77: Original relators for homology class H; = Z

No. f G
1](3,7,7,4,6,0 | (ab]ad®3a°b75 a2
2|1 (5,5,7, 4, 4, 6) | (a,b|ab ta tbaba=tb=1 a*b " ta"tba= b7, ab"ta"2b" tab)
3| (4, 4,10, 3, 3, 9) | {a,b|ab~! _1ba_1b_ a?b~ a7 ab a3 tab)
4| (4, 6,8,5, 7,13) | {a,b| 3b 1a3b 2a_1b_ a’h=3, 2b—>
5| (6, 6,6, 5,5, 5) | (ab]|ab ta tbaba=tb~ 1 a?b™ 1a’1b2 “1p=1 ab~ta " ba"1b1ab)
6| (3, 5,11, 4, 4,14) <a7b|ab 2ab ah=3,ab~ Tg-Th 1y
71C6,6,8,1,3,9 | (ab]|ab?! *2b 1ab Lab~ 1 a 171 ab ta=2b"2a2b"Lab abab~
8| (6,6,8,5,5,7) | {ab|ab! _1ba2ba_1b_ ,a’b™ 1a‘lbaba Y=t ab~ta"tba"tb~tab)

Y

The group G is isomorphic to Z. The generator a is free and a = b. The same method can be
used in the case of the group G4. Rewrite the second relator in the presentation of the group Gz
to the form a = bab to get the equation a = b. Thus G7 = Z, since substituting a to other relators
gives no new relation for a.

Rewrite the presentation of the group Gs in the generators a and ¢ = ab~!. The first relator
is a® = cac 2ac, the second relator is cac = aca. The third relator follows from previous two.
Rewrite the relators to the form a® = (ac)ac™2ac and (ac)? = a(ac)a. Rewrite the presentation in
the generators a and d = ac. The second relator is d?> = ada and the first one is a® = dad~*ad~lad.
Let us multiply the second relator from left and from right by a. The new form of this relator is
a® = adad~'ad 'ada. Insert now the second relator into the first. The result is a® = dad. Then
left multiply the first relator by a and the second relator from right by d. The final form of the
presentation of this group is G = (a,d | a® = d® = (ad)?).

In the case of the group G3 the rewriting of the presentation in generators a and ¢ = ab™! is
useful. The first relator transforms into ¢ = aca, the second relator transforms into a® = cac. The
third relator can be derived by using previous two relators. Now right multiply the first relator by

¢ and the second relator from left by a.

Gg3 = G2 The isomorphism of the groups G35 — G2 can be set by mapping ¢ : a — a,c +— d.
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To derive the presentation of G'g rewrite the first relator into the form b2 = aba and the third one
into the form a® = bab. Now right multiply the first relator by b and left multiply the third relator
by a. The second relator follows from the first and from the third relator. Since G5 = (a,d | a® =
d® = (ad)?) and G = (a,b | a® = b3 = (ab)?), the isomorphism of the groups ¢ : Gg — Go can be
defined by setting ¢ : a — a,b — d.

In the case of group G5 rewrite the second relator into the form ab~2a = b~'a?b~!. Combining
the second and the third relator we get the relator b~ 'ab? = a2ba~!

The relators of Gg rewrite as follows. Substituting the third relator into the second one we get
a® = b~ tab%ab~!. The first relator depends on the following two. The third relator can be rewritten
into the form ab='ab = b"ta"'ba 1.

It remains to show that G1, G2, G5 and Gg are mutually non isomorphic. The method to prove
is based on the comparison of lengths of lists of normal subgroups of index up to 12. The group G4
contains 12 such subgroups, the group G2 contains 15 such subgroups, the group G5 contains 131
such subgroups and the group Gg contains 14 such subgroups. It follows that these groups cannot
isomorphic.

Table 4.78: Isomorphism classes in Hy = 7Z
f G (G) | G/CG) #
(3,7,7, 4,6, 0 |7Z Z 1 3
(5,5,7,4,4,86) | (a,b|a’=0b= (ab)2> Z A1(6,3,2) | 3
(6,6,6,5 5,5 | (ab]a’bat=0b"1ab? b ta’h~! =ab"2a) ? ? 1
(6, 6,8,5,5, 7| (ab]a®=b"tab*ab ! ab tab=>b"ta"tba™t) | ? ? 1

Homology class Hy = Zs X Z
Table 4.79: Original relators for homology class Hy = Za X Z
No. f G
1]C1, 1,7, 2,0, 2 | {(ab]|a®bta’b,a?)
2| (2, 2,10, 3, 1, 3) | {(a,b| a®>b~ta"2ba=2b"1a%b, a?)
31C3,3,9,2,0, 4| {(ab]|ab ta®baba*b~1, a?b"1a%b,a?)
41 (4, 6,6,5,5, 3 | (ab|a*b"ta"b?a b7, a®b " a b1 ab—3ab)
513, 7,7, 4, 4,12) | (a,b | ab3ab,a*b*,a3b"ta" b7 1)
6| (3, 3,13, 4, 2, 4) | {a,b]| a?b~ta"2ba®b"La%ba=2b"1a%b, a?)
7|1 (5, 5,11, 2, 0, 6) | {(a,b | ab—ta®bababa’*b~tab=, ab~ta%baba?b~t, a?)

The fact G1 2 Gy &2 G3 =2 Gg =
b is free and a? = 1 can be easily derived.

Gr7 = 7o % 7 is obvious. After some substitutions the fact that

Groups G4 and G5 are isomorphic. To prove it, rewrite the second relator of G4 into the form

3 = bab and the third relator into the form b% = aba.
and right multiply the third one by b. The first relator depends on the previous two. In the case of
G5 rewrite the first relator into the form b = aba and right multiply it by b. The derivation of the

second relator is obvious. The third relator follows from previous two.

G5 — G4 by mapping ¢ : a — a,b— b.

Table 4.80: Isomorphism classes in Hy = Z X Zo
f G (@) | G/C(G)
(4,6, 6,5,5,3 | (b]la=0b1=(ab)? |2 AT(4,4,2)
( 5 ,10, 3, 1, 3) ZQ*Z 1 ZQ*Z

Now left multiply the second relator by a

Now set the isomorphism
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Homology class Hy = Z3 X Z

Table 4.81: Original relators for homology class Hy = Zs X Z
No. f G

11C1, 1,1 0, 2) | (a,b] a®vta®b,a?)
21(5, 5 6) | (a,b|ab"tab ta"2b1 ab~ta"tbaba=lb7!,
a*b~ta b ta"1p7t)
312, 2,16, 3, 1, 3) | (a,b]| a®b"la"3ba"3b"1a®b, a®)
4| (2, 2,16, 3, 1, 9) | {a,b] a®*b~ta3ba=3b"1a®b, a®)
5| (6, 6,8, 1,9, 7 | {ab|ab tabtab~ta b~ ta b~ ta 107t
ab=tab ta"?% 1 a?b " ta b ta 0L
6| (3, 3,15, 2, 0, 4) | (a,b]| ab—ta®ba®ba*b1,a®b~tab, a?)

The isomorphisms Gy = G3 & G4 = Gg = Z3 + Z can be easily checked from the presentations.

-

1, 2
7, 2

(&)

-
-

Rewrite the relators of the group G into the form a? = b~ 'ab~'ab~! and a? = babab. The second
relator can be derived from the first relator. Left multiply both relators by a. Then rewrite the
presentation of the group Gs in the generators b and ¢ = ab=! to get Go = (¢, b | ¢ = (cb)? = (cb?)?).

Rewrite the relators of G5 to the form a? = b=1(ab™!)? (the second) and a? = b(ab)? (the third).
The first relator can be derived by using the second and the third relator. Left multiply both relators
by a and rewrite the presentation in the generators d = ab=! and b. We get G5 = (b,d | b*> = (db)3 =
(db?)?).

G2 = Gy The isomorphism G2 — G5 is done by setting ¢ : ¢ — d, b+ b.

The group G2 is not isomorphic to Zs * Z since the list of factors by low-index subgroups up to
index six contains the symmetric group Ss but Zs * Z admits no such a factor by low-index normal
subgroup.

Remark. Referring Matveev [25] and the classification results in [3], 3-manifold with the fundamental
group Gs is Euclidean.

Table 4.82: Isomorphism classes in Hy = Z X Zs

f G (G) | GKG) | #
(5,5,7, 2,6, 6) ] (a,b]a®=(ab)®=(ab?)?) | ? ? 2
(1, 1,11, 2, 0, 2) | Z3*Z 1 Z3s*7 |4

Homology class Hi =74 X Z

Table 4.83: Original relators for homology class Hy = Z4 X Z
No. f G

1]C1, 1,15, 2, 0, 2) | (a,b | a*b~ta%b,a?)

2| (6, 6,6, 1,7, 7 | {ab|ab tab"ra b ta" b7, ab"%ab ta"2b7 L,
ab~ta=tbaba=1b~1)

The fact, that G; = Z4 * Z can be obtained from the presentation of G1 in obvious way.

Rewrite the presentation of the group G5 in the generators a and ¢ = ab~!. The presentation in
these generators is Go = (a,c | ¢3 = a’c™la,a® = c2a='c?). Third relator can be derived from the
previous two.
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The non-isomorphism of the groups G5 and G can be proved by browsing the list of subgroups
of index threell. In the case of G5 there are seven subgroups of index three. The group G contains
only six conjugacy classes of subgroups of index three. Thus G3 2 G;.

Table 4.84: Isomorphism classes in Hy = Z X Zy4

f G (G) | G/EG) | #
(6,6,6,1,7, 7] (ab]a®=0b%a"10%b=a%b"1a? | ? ? 1
(1, 1,15, 2, 0, 2) | Zs*Z 1 Ty x 7 1

Homology class Hi = Z5 X Z

Table 4.85: Original relators for homology class Hy = Zs X Z

No. f G
1]1(e6, 6, 8, 5,11, 7) | {a,b| ab~Taba?bab=!, a*b~Tababab=!, ab~taba=1b=1a~1b)
2| (1, 1,19, 2, 0, 2) | {a,b | a®b'a5b,a®)
3| C1, 1,19, 2, 0, 6) | (a,b] a®bta®b,a’)

The groups G2 and G5 are isomorphic to the group Zs * Z, which is easy to prove straight from
the presentations.

Rewrite the presentation of the group G in the generators a and ¢ = ab. The first relator is
cb=2c? = b%c~2b. Third relator can be transformed into the form bc='b = b~'c?b~!. The second
relator can be derived by the substitution of the third relator into the first.

The groups G; and G2 are not isomorphic. The proof is based on browsing the classes of
conjugacy of subgroups of index five. The list of conjugacy classes of index five contains 5 classes
for the group G7. The group G2 contains only four (conjugated) subgroups of index five.

Table 4.86: Isomorphism classes in Hy = Z X Zs

f G C(G) | G/C(G) | #
(6, 6,8, 511, 7) | (a,b]|ab2a®> =b%a"2b,ba b =a"1b%a"t) | ? ? 1
(1, 1,19, 2, 0, 2) | Zs* Z 1 Zs * 7 2

Il these subgroups are the representatives of conjugacy classes
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4.8 Summary

Let us summarize our analysis of fundamental groups of 3-manifolds given by admissible 6-tuples.
Our input catalogue contains 433 admissible 6-tuples of complexity at most 21. Let us recall that
the catalogue was already reduced by excluding the six-tuples which were recognised as those coding
lens spaces and their connected sums. We have found 78 isomorphism classes of fundamental groups
of prime 3-manifolds of genus two comming from our catalogue. The remaining six-tuples in our
catalogue give rise either to cyclic groups or to free products of cyclic groups. These six-tuples by
Theorems 2.12 and 2.14 code either 3-manifolds of genus at most one or decomposable 3-manifolds
of genus two. More detailed description of fundamental groups follows.

Trivial group — 3-manifolds of genus 0 There is only one admissible 6-tuple, namely f =(3,
7,11, 6, 0,12), such that 7 (f) = 1.

Cyclic groups — 3-manifolds of genus 1 The 1019 admissible 6-tuples up to complexity 21 give
rise to cyclic groups Z,,2 < n < 29 and infinite cyclic group. Appendix C contains represen-
tatives of cyclic isomorphism classes derived from the reduced catalogue. The cases where we
were able to determine the lens space L£(p, ¢) coded by the 6-tuple are indicated by specifying
the two paramaters p, q.

Free products of cyclic groups — decomposable 3-manifolds of genus 2 There are 137 non-
prime 3-manifolds of genus 2 coded by admissible 6-tuples up to complexity 21. They are
connected sums of lens spaces and S* x 52, respectively. Free products are of the form Z,, * Z,,
and Z * Z,, for some parameters m, n, see Appendices C and B for details.

Acyclic groups — prime 3-manifolds of genus 2 There are 78 isomorphism classes of acyclic
fundamental groups represented by admissible 6-tuples up to complexity 21. These 6-tuples
represent prime 3-manifolds of genus 2. Among them, there are 71 6-tuples admitting finite
homology group and 7 ones admitting infinite homology group. Further, we have identified 39
classes with finite fundamental group and 39 classes with infinite fundamental group. Finite
fundamental groups, we found, are all mentioned by Milnor [25, p. 405]. Moreover, we have
found also 4 6-tuples representing compact, connected Euclidean 3-manifolds. See Appendix C
and B for details.

The main result of our analysis follow.

Theorem 4.17 Prime 3-manifolds of genus at most two, represented by admissible 6-tuples of com-
plexity < 21, have fundamental groups of one of the following types:

e trivial group,

e cyclic groups Zy,2 <mn < 29,
e infinite cyclic group Z,

e acyclic groups.

The list includes 78 isomorphism classes of non-trivial acyclic fundamental groups of prime 3-
manifolds of genus two. Among them, there are 39 elliptic manifolds with finite groups, 4 Fuclidean
manifolds and 35 other manifolds with infinite fundamental groups.

As concerns, Euclidean 3-manifolds of genus two we have the following statement.
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Theorem 4.18 There are exactly four isomorphism classes of fundamental groups of orientable
Euclidean 3-manifolds of genus 2. The list of representing 6-tuples follows:

1. (5,5,5,2,2,2) with homology Hy = Z4 X 74
2. (5,5,7,4,4,6) with homology Hy = 7
3. (4,6,6,5,5,3) with homology H1 = 7 X Zs2
4. (5,5,7,2,6,6) with homology Hy = 7 X Zs
Previous list covers the complete list of orientable Eucleidean 3-manifolds of genus 2 [22].

In the end of our analysis let us summarise our knowledge about the structure of fundamental
groups appearing in the catalogue. The structure is well-known in the case of 39 finite groups we
have found. Eleven of extended triangle groups was found in the class of infinite groups. These
groups can be described geometrically and some related particular results are claimed in Section 4.4.
In the case of 16 further groups we found out that their presentations are very similar to the extended
triangle groups. Generally, this presentation can be paramatrised as

T = (a,b|a* =0b' = (a"b*)™), k,l,m,n,r,s € Z.

Note that the exponents r and s in the presentation of T are relatively small (at most 3 in absolute
value). One can easily check that the center of the above groups is infinite cyclic. We do not know
almost nothing about the structure of the following 12 groups:

1. (a,b | a* = b%a=1b?,b% = a®b~'a®) with homology Z4,

2. {(a,b | a®> = (ab?)%,b? = (a?b)?) with homology Z, x Z4,

3. {a,b | a® = (a7 1b?)2,b? = (a®b)?) with homology Zs X Z4,

4. {a,b| a®b~ta = ba=1b? = (a*b?)?) with homology Zs x Zs,

5. (a,b | a® = b%ab?, a® = ba=3b3) with homology Zao,

6. (a,b | a=0b%a?b?b = a®ba®) with homology Zay,

7. {a,b | b= a%ba?, a* = b*>a~1b?) with homology Zay,

8. {(a,b| a*ba=t = b~ tab? b 1a’b~! = ab—2a) with homology Z,

9. {a,b| a®=0b"tab*abt,ab~tab = b"'a"'ba~') with homology Z,
10. {a,b | a® = (ab)?® = (ab?®)3) with homology Z x Zs,
11. {a,b | a® = b%a=1b?,b® = a?b~ta? with homology Z x Z4,
12. {a,b | ab=2a® = b%a=2b,ba=2b = a~'b%a!) with homology Z x Zs.

Groups 2, 3 and 10 can be interpreted as some particular subgroups of the 3-dimensional affine
group over R.



Chapter 5

Concluding remarks

The categorisation of 6-tuples by fundamental groups of represented manifolds leads us to more
sophisticated questions about observed manifolds. Some of them are included in this chapter.

Q1: Is there a coincidence between the homotopy classes, we have identified, and homeomorphism
classes of represented 3-manifolds?

The answer was done by direct computations provided by Paola Bandieri and Carlo Gagliardi
(University of Modena). They have used the software developed at Modena University. The program
is called DUKE and allows us to provide many operations on 4-edge-coloured graphs (crystallisations)
such as dipole moves, check colour-preserving graph isomorphisms and much more computations.
Using this program the one-to-one correspondence between isomorphism classes of fundamental
groups and homeomorphism classes of represented 3-manifolds was confirmed.

The result leads us to the following statement

Theorem 5.1 There are exactly 78 prime 3-manifolds of genus 2 represented by the crystallisations
of complexity up to 21.

The proof of the above statement can be completed with some effort formalising the results obtained
from DUKE software. Alternatively, it can be checked using different approach, for instance using
algorithms developed by Matveev and others [25].

Generally, we can ask whether the prime genus two 3-manifolds are classified by their fundamental
groups. Is seems to be that no counterexamples are known at all.

An irreducible boundary irreducible 3-manifold M with boundary pattern B is called Haken, if
either M is sufficiently large or B # () and M is a handlebody, but not a 3-ball. The manifold is
sufficiently large, if it contains a closed connected surface which is different from S2, RP? and is
incompressible and two-sided.

Moreover, as noted by Sergei Matveev [24], the following implications hold.

1. If M is Haken, then it is determined by the fundamental group [25].

2. If M is hyperbolic, then the same is true.

3. If M is not Haken and not hyperbolic, then it is Seifert over the sphere with three exceptional
fibers.
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We have two possibilities:

a.) M has a finite fundamental group, hence it is elliptic. Then it is determined by the fundamental
group;

b.) M has an infinite fundamental group. Then its homotopy type is determined by the funda-
mental group. It is not clear how to convert this homotopy statemet into topological one.

The proof of Theorem 5.1 was achieved by using dipole-move equivalence, the second question
naturally arises:

Q2: Is there an algorithm to decide whether two 4-edge-coloured graphs are dipole-move equivalent?

An answer to this question is not known. Although, short chains of reductions of dipoles gives us
some results in particular cases, there is no idea to extend the method in general. This problem may
be similar to Post correspondency problem in some attributes. A reduction to Post corresponding
problem was not done.

Let us come back to our list of isomorphism classes. We have proved that there are 78 isomor-
phism classes of fundamental groups of prime 3-manifolds of genus 2 and among them there are
39 isomorphism classes with finite fundamental group. By Theorem 2.13 finite fundamental group
implies the 3-manifold to be the factor of S3 (see Chapter 2). Such manifolds are called elliptic or
spherical, respectively. The classification of finite nonabelian fundamental groups freely acting on
S3 is due to Milnor [25, 26]. The are:

e Finite cyclic groups*,

Generalised quaternion groups Q4y,, n > 2,

Dihedral groups Dok (2541, k > 3,n > 1,

Groups of symmetry of Platonic solids, Pay, Pyg, Piog and Pé k> 2,

.3k

e Direct product of any of these groups with a cyclic group of coprime order.

The subscripts in the group symbols above show the orders of groups. Presentations of these groups
and homology classes coinciding with the first homology group are the following:

[ Q4n:<a,b|a”:bzz(ab)2>;H1:Z2XZQ 1f2|’fl7 H1:Z4 leJ[TL,

(] ng(2n+1) = <a7b | a,2k = b2n+1 = 17ba = b_1>; Hl = ng,

Py = (a,b | a® =b* = (ab)3,b* = 1); Hy = Zs,

Pis = (a,b | a® = b? = (ab)’,b" = 1); H1 = Za,

P120 = <a7b | a5 = b2 = (ab)3,b4 = 1>; Hl = ].7

! g = (a,b,¢ | a? = b2 = (ab)?,a® = b,b¢ = ab,®" = 1) ; H, = Zy

*fundamental groups of lens spaces, we omit them further
fthese groups can be also presented as two generator groups [16]
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In fact, small representatives of all the previous types of groups appear in our catalogue (see Ap-
pendices C and B). Following question arises.

Q3: Is every elliptic 3-manifold of genus at most two?

The question was answered in the affirmative, as we was informed by Sergei Matveev [24]. Since
any 3-manifold of genus at most two can be represented by a 6-tuple [7], nice problem can be
formulated.

Problem: For each elliptic 3-manifold M with given Milnor’s group find an admissible 6-tuple
representing M.

Some particular results in this direction were established yet. For instance, we have found
”canonical” representatives for elliptic 3-manifolds given by generalised quaternion groups. Further
particular questions related to Q1 are of interest.

Q4: Given admissible 6-tuple f € F5 is there an algorithm to decide finiteness of 71(f)?
In Theorem 4.18 we derived the representatives of all Euclidean 3-manifolds of genus 2.
Q5: Can we classify (prime) orientable 3-manifolds of genus two with infinite fundamental group?
Partial result is contained in [25, Chapter 6] for Haken 3-manifolds.
There exists an algorithmic classification of Haken 3-manifolds[25, p. 216].

These results may help us while we can recognise which crystallisations represents Haken 3-manifolds
of genus two. It is suitable to observe, which 6-tuples represents Haken 3-manifolds and answer the
following question.

Q6: How to recognise, if given 6-tuple represents an Haken 3-manifold?

Solving these and similar questions can give us an opportunity to complete our view on 3-
manifolds represented by admissible 6-tuples. The success in the further research depends on creating
the catalogues of 6-tuples of bigger complexity than we have done. In [25] other approach to solve
the homeomorphism problem using so-called Turaev-Viro invariants is described. We have got an
information that the author solved the homeomorphism problem for crystallisations up to complexity
24 by using his algorithm.






Chapter 6

Software notes

All software developed to solve the isomorphism problem of fundamental groups is designed as a
batch of small programs solving some particular problems and the output of the some program is
the input of other one. Programs were developed for the UNIX-like (Linux) operating system using
standard GNU compiler set (gcc version 3.2), Python (version 2.3) and GAP [16], which is extremely
useful for computations on abstract groups. There should not be any problem to run these programs
(after recompilation) under other OS’s.

Data shared between steps of batch are stored in usual text files, one item on every line. Each
program gather the line of the file, does some computations and resulting data are written into
the output file. One can develop some shell script to automatise the batch as possible. Note that
the results of the batch are prepared for ad-hoc computations on the groups. These data does not
contain full information about groups in general.

Programs are based on algorithms described in Chapters 3 and 4. We describe the most important
programs of the bundle. We also describe step-by-step process to create the final catalogue, similar
to Appendix C.

Generator of manifolds This task is realised by the program 00_generator. This program is
written in C and simply generates the list of admissible 3-manifolds (see Definition 9). The
presentation of fundamental group is computed for every 6-tuple by using Gagliardi’s algorithm
(see Construction 3.12). The fundamental group is written in compressed form. All groups
are considered to be two-generator on generators @ and b. The symbols are written in the
following form:

e qgash

e basB

ealasa

e b lasb

e power of the generator in multiplicative form (e.g. a® as AAA)
The program takes only one numerical argument — the highest complexity of 6-tuples included
in catalogue. This program creates one file with name M?77.adm in the current directory.
(i.e /home/user/M021.adm). Question marks are replaced by highest complexity given as

command-line parameter. If is the program ran without the argument, the highest complexity
17 is automatically considered.
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Computing G-orbits We use the results of the Chapter 3 and the paper [21] to compute the
minimal representatives of G-orbits in our catalogue before we do other considerations. Note,
that we do not exclude non-frames (see Definition 10). Thus the new catalogue is more rich
as the catalogue by M. R. Casali [6]. It is no problem to add such a test into the script in the
future.

This step is realised by Python script named 01_gorbits.py. This program takes one necessary
command-line argument — the name of input text file, one 6-tuple on the line. The minimal
representative of G-orbit is computed and if it is equal with the 6-tuple on input, it is written
to the output file. The name of output file is filename.gow (i.e /home/user/M021.adm.gow)

This program also take one optional command-line argument — -¢c — which must be written
after filename. In this case the behaviour of program is a bit changed. Program tries to read the
presentation (the relators) of the fundamental group on the same line as the 6-tuple and checks
if one of relators does not contain unique generator (e.g AbAAAAA), which implies the cyclic
group. In this case the 6-tuple is not processed further. Otherwise, the 6-tuple is processed
as is described higher. The output of the program is written in to the file filename.goc (i.e
/home/user/M021.adm.goc)

Homology group test This step is provided by the Python script 02_homology.py. We try to
construct and check the structure of homology group given by the fundamental group. Since
it can be done only in the case of infinite homology group (see Lemma 4.3), we split the list
of 6-tuples into two sublists — the first one contains the 6-tuples with finite homology group
and the second one includes 6-tuples with infinite homology group. GAP is also not able to
compute with such infinite groups.

The orders of generators are computed and appended to each line in the form {m,n}. Zeros
in this set indicates the equality of generators; {n,0} means, that the presentation contains
the relator @ = b. Further, the set {0,0} can appear; in this case the same powers of both
generators equals (e.g. a® = b®) and there no other relation in the presentation.

The input of the program is traditional - the name of file from the previous step. Output is
generated into two files — filename.fhg

(/home/user/M021.adm.gow.fhg) and filename.ihg. The contents of filename.ihg can be
easy processed by using Lemma 4.3, the second file is prepared for the next step.

Preparing GAP input The data with recognised finite homology group is further processed by
the the Python script named 03_prepare-gap.py. This script creates the script, which can be
directly processed in the GAP by using the command Read. Input is the file *.fhg created in
previous step, output is the file filename.gap. Note that we use only the catalogue of 6-tuples
with finite homology groups.

GAP processing In this step are the simplified presentations of fundamental groups and homology
groups computed by the GAP. The input is GAP script, which can be executed by the command
Read. This script is created in previous step and has the name e.g MO21.adm.gow.fhg.gap.
Part of this script (but functional) follows:

# formatting of output was cut !!!

f:=FreeGroup(2);

A:=f.1;

B:=f.2;

pr:=[

(v 1, 3, 3, 2, 2, 0",[AxB"-1xB~-1xA,A%A,B*B],"2,2"],
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# many lines
13
for p in pr do
for every group in list
we gather the presentation
:=f/pl2];
and create the factor group of
free group of rank 2
:=SimplifiedFpGroup(g);
we compute the simplified presentation
:=CommutatorFactorGroup(g) ;
then we create the homology group
:=0;
since homology group is a factor group
of Z x Z
for x in h do
if i<Order(x) then
i:=0rder (x);

H HH HP H H HEMR K H

fi;
# we compute the highest order of element
# this is the order of the first factor group
od;
# then we compute the order of second factor group
# of direct product
j:=0Order(h)/i
od;

The output of GAP script is named (in our case) M021.adm. gow.fhg. fgroups. It is prepared
to use in last automated part of process

Creating resources The result of computations in GAP we categorise by the script 04_selector.py.
The output are the following files:

e M??77_triv.res — contains all 6-tuples with trivial fundamental group
e M??7_cyc.res — contains 6-tuples with cyclic fundamental groups and its presentations

e M??77 prod.res — contains 6-tuples with fundamental groups, which are free products. It
contains also its presentations.

e M?7?77 _fg.res — contains unresolved cases of fundamental groups with t heir presentations
and homology groups.

All files are written in human-readable form, which can be also processed by other programs
such as formatters of TEX source etc. The file M?7??7_fg.res naturally contains the most of
6-tuples and it is the input of next step. Note that due to limitations of GAP by computing
with presentations some cyclic groups and free products may appear in the list of unresolved
and must be moved to other resource files by hand.

Creating of catalogue This is the contents of Chapter 4. One interesting tool was developed to
make the proofing process more effective. This Python script is called 05 _knuth-bendix.py



92

3-manifolds of Heegaard genus at most two

and contains the program to extract the members of homology group from the file M?77? fg.res
for further processing in GAP.

A lot of fundamental groups in the list of unresolved and there is a problem to find the orders
of groups by using standard GAP command Order (). The function of this command is based
on Todd-Coxeter coset enumeration, which is not an algorithm, but procedure only. Similarly,
the identification of the group in GAP library by using IdSmallGroup() command is also
based on coset enumeration. Thus it is not possible use this command in general situation.

Fortunately, there is standalone GAP package named KBMAG [20], which contains tools for
more sophisticated dealing finitely presented groups and monoids. Its functionality is based
on Knuth-Bendix finite state automata and allow us to test some properties of groups in better
way. Details on this package and Knuth-Bendix automata can be found in [20] and [10].

In a few words, if the finite state Knuth-Bendix automaton can be created for the finitely
presented group, the script tries to find the order of group, considering the group to be finite.
In this case the group is identified in GAP library. In other cases, the group is considered to
be infinite and the rest of process is left to human to solve the group in other way.

Knuth-Bendix automaton is the synonym of Knuth-Bendix rewriting system, which is reducing,
finitely terminating, confluent term rewriting system whose reductions preserves identities.

One script created by 05 _knuth-bendix.py from homology class Zs follows:

RequirePackage ("kbmag") ;
F:=FreeGroup("a","b");

a:=F.1;

b:=F.2;

prezent:=[

["C 4, 8, 8, 5, 5, 13)", [a*b~-4*a*b,a*b"-1*a"~-1xb~-1*xa~3]],
["C 3, 9, 9, 4, 4, 16)", [a*xb"-4*a*xb,a*b”-1*a"-1*xb"-1*a"3]],
["C 5, 5, 11, 4, 8, 4)", [a*b"-1*a"-1%b"-1%a"2*xb*a, ....

(¢ 7, 7, 7, 4, 4, 8)", [b"-1*a"-1xb*a*b*a”-1, .....

1;

# shortened

for prez in prezent do
for every group in homology class
:=F/prez[2];
we create finite presented group
:=KBMAGRewritingSystem(G);
further we create Knuth-Bendix rewriting
system
Print (prez([1]);
Print(" ");
KnuthBendix (R) ;
# create Knuth-Bendix finite state automaton,
# if possible, also check the confluence of
# rewriting system
if IsConfluent(R)=true then
# if rewriting system is confluent,
# we have a chance to find the order and

H H O H QH
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# type of the group
Print(Size(R));
Print(" ");

Print (IdSmallGroup(G));
# we print the identification of the group

# in the GAP library

Print("\n");

else
# if rewriting system is in-confluent
# we deduce the group to be infinite,
# but it may not to be true
Print("infinite ?\n");

fi;

od;

There were developed some other utilities for formatting outputs from files becoming in process,

checking the partial results and for some other tasks. All of these tools are written in Python.

The point of view in process of programming all the software was on the functionality, not
optimisation of programs. But, in fact, the time of processing the catalogues by computer is very

short comparing to time of computations by hand.
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Appendix A

Catalogues of G-orbits

Reduced catalogue from [6]
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D)

1, 7,
(4,6, 6; 3, 5,11)
(4, 6, 6; 5, 5, 3)

( 4, 6, 6;

(1, 5,9; 2,2, 0
(1, 5,9; 2,4, 0
(1,5,9; 4, 2, 0
(1, 5,09; 4, 4, 0
(1,7,7;, 2,2, 0
(1, 7,7; 2,6, 0

(3,3,9;0,2,4

(4,4,4, 1,1, 1

(4,4,41,1,5)

(4, 4, 4; 3, 3, 3)

17 +++

+++ z

13 +++

+++ z

(1, 3,13; 2, 2, 0)

(1,3,9;2,2,0

99



3-manifolds of Heegaard genus at most two

100

( 4, 4,10; 3, 3, 3) (3, 5,11; 2, 4, 2

(1, 3,13; 4, 2, 0)

(4, 4,10; 3, 3, 9 (3, 5,11; 4, 4, 0)

(1, 3,13; 6, 2, 0)

( 47 6: 85 1’ 1, 1) ( 3, 5,11; 4, 4, 2)

(1, 5,11; 2, 2, 0)

(3, 5,11; 4, 4,14

(3, 5,11; 6, 4, 0)

(4,6,8; 1,1, 3)

(4, 6, 8;
(4, 6, 8;

(1, 5,11; 2, 4, 0)

1, 1,11)
1, 5, 3)

(1, 7,9;, 2,2, 0
(1,7, 9; 2,6, 0
(1,7,9; 4, 2, 0
(1,7,9; 4,6, 0

(3, 3,11; 2, 2, 2)

(3,7, 9; 2,0, 2
(3,7, 9; 2,4, 2)
(3,7, 9; 4, 2, 0
(3,7, 9; 4, 4, 0)

(4,6,8;, 1,7, 1)

(4, 6, 8; 3, 5,13)
(4,6, 8; 3,9, 3)

(3,7,9; 4, 4,14)

(3,7,9; 4,6, 0
(3,7,9; 4,38,0

(4,6,8;3,9,13)

(4,6,8;5,1,3)

(3, 3,115 2, 2, 4)

(3, 3,11; 2, 2,10
(3,5,9;, 2,0, 2
(3,5,9;2, 4,0
(3,5,9; 4, 2,0
(3,5, 9; 4, 4,12)
(3,5, 9; 4, 6, 0
(3,7, 7;, 2,2, 2
(3,7,7;, 2,6, 2

(4,6,8;5,5,3)

(3,7,9; 4, 8,14)
(5,5,9;0, 4, 4

(5,5,9;0, 4, 6

( 4, 6, 8; 5, 5,11)
(6, 6, 6; 1, 1, 1)
(6, 6, 6;

(6, 6, 6;
(6, 6, 6;

1, 1, 9
1, 3, 3

(5,5,9; 0, 4,12)
(5,5,9;2,0, 2

1, 3, 7

(5,5,9; 2, 0,10)
(5,5,9; 2,2, 2)
(5,5,9; 4,0, 4
(5,5,9; 4, 0,8
(5,5,9; 4, 4, 8)
(5,5,9; 4, 8, 4
(5,7, 7; 0, 4,12)

(5,7,7;, 2,2, 4
(5,7, 7; 2,6, 0
(5,7, 7; 2,8, 2
(5,7, 7; 4, 4, 2)

(5,7,7; 4, 6, 4)

(6, 6,6;1,5,9)

(6,6,6;1,7,7

(3,7, 7; 4, 4,12)
(5,5,7;,0, 2, 6)
(5,5, 7; 0, 4, 6)
(5,5, 7; 0, 4,10)
(5,5,7;,2,0, 4

(5,5,7;,2,0,8)
(5,5,7;,2, 4, 2
(5,5, 7; 2, 4, 6)
(5,5, 7; 2,6, 2

(5,5,7;2,6, 6)
(5,5, 7; 4, 0, 6)

(5,5, 7; 4,2, 4
(5,5,7;4, 4,4
(5,5,7; 4,4, 6)

(6, 6, 6; 3,3, 5)

(6,6, 6;3,5,5)
(6,6, 6;5,5,05)

19 +++

+++ z

(1, 3,15; 2, 2, 0)

(1, 3,15; 6, 2, 0)

(1, 5,13; 2, 2, 0)

(1, 5,13; 2, 4, 0)

(5,7, 7; 4, 6,12)
(5,7,7; 6,6, 4)

(1, 5,13; 4, 2, 0)

(1, 5,13; 4, 4, 0)

(1, 5,13; 6, 2, 0)

= 20 +++

+++ z

(1, 5,13; 6, 4, 0)

(1, 7,11; 2, 2, 0)

18 +++

+++ z

(4, 4,12; 1, 1, 1

(1, 7,11; 2, 6, 0)

( 4, 4,12; 1, 1, 5)

(1,9,9; 2,2, 0
(1,9, 9; 2, 4, 00
(1,9, 9; 2,6, 0
(1,9,9; 2,8, 0
(1,9, 09; 4, 4, 0
(1,9,09; 4,6, 0

(3,3,13; 0, 2, 4

(2,8, 8; 3,3, 1
(2,8,8;3,5,1)

(4,4,12; 1, 1, 9)

( 4, 4,12; 1, 1,13)

(2,8,8;5,5, 1)

( 4, 4,12; 1, 5, 1)

(4, 4,10; 1, 1, 1)

( 4, 4,12; 1, 5, 5)

(4, 4,10; 1, 1, 3)

( 4, 4,12; 3, 1,11)

(4, 4,10; 1, 1, 5)

( 4, 4,12; 3, 3,11)

(4, 4,10; 1, 1, 7

(3, 3,13; 0, 2,12) ( 4, 6,10; 1, 1, 1)

(3,3,13; 2, 0, 2)

(4, 4,10; 1, 1, 9

( 4, 6,10; 1, 1,13)

(4, 4,10; 1, 1,11)

(3, 3,13; 2, 0,10) (4, 6,10; 1, 7, 1)

(3, 3,13; 2, 2, 8)

(4, 4,10; 1, 5, 1)

( 4, 6,10; 3, 5, 3)

(4, 4,10; 1, 5, 7)

(3, 3,13; 2, 2,12) ( 4, 6,10; 3, 5,15)

(3, 5,11; 2, 4, 0)

(4, 4,10; 1, 5, 9

( 4, 6,10; 3, 9,15)

(4, 4,10; 3, 1, 9
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(1, 5,15; 2, 4, 0) (5, 5,11; 2, 6, 2)

(4,6,10; 5, 1, 1)

(5, 5,11; 2, 6,10)
(5, 5,11; 4, 0,10)

(1, 5,15; 6, 2, 0)
(5, 5,11; 4, 2, 4)

(4, 6,10; 5, 3,15)
(4, 6,10; 5, 5, 1)

(1, 5,15; 6, 4, 0)

(1, 7,13; 2, 2, 0)

( 4, 6,10; 5, 5,13)
(4, 6,10; 5, 9, 3)

(5, 5,11; 4, 2, 8)

(1, 7,13; 2, 6, 0)

(1, 7,13; 4, 2, 0) (5, 5,11; 4, 4, 8)

(4,6,10; 7, 1, 1)

(5, 5,11; 4, 4,10)

(1, 7,13; 4, 6, 0)
(5, 5,11; 4, 8, 4)

(4, 6,10; 7, 3,15)
(4,8,8; 1,1, 1)

(1, 7,13; 6, 2, 0)

(5,7, 9; 0, 2, 4
(5,7,9; 0, 2,12)

(5,7,9; 0, 4,14)

(5,7,9; 0,6, 4)
(5,7, 9; 2,0, 2

(5,7, 9; 2, 2, 4
(5,7,9; 2,4, 4)

(5,7,9; 2,6, 0
(5,7,9; 4,0, 2

(1, 7,13; 6, 6, 0)

(4, 8,8;1, 1,13)

(4,8,8;,1,7,3)

(1,09,11; 2, 2, 0)

(1,09,11; 2, 4, 0)

(4,8,8; 1,9, 1

(1, 9,115 2, 6, 0)

(4,8,8;1,9,13)

(4, 8,38;3,3,1)

(1, 9,11; 2, 8, 0)

(3, 3,15; 2, 2, 2)

(4, 8, 8; 5, 5,13)
(4,8,8;5,7,3)
(6,6,8 1,1, 1)

(3, 3,15; 2, 2, 6)

(3, 3,155 2, 2,14)
(3,5,13; 2, 0, 2)

(6,6,8; 1,1, 3)

(5,7,9; 4, 0,14
(5,7,9; 4, 2,2

(5,7, 9; 4, 6, 0)
(5,7,9; 4,6, 2)

(3, 5,13; 2, 4, 0)

(6, 6,8, 1,1, 5)

(3, 5,13; 4, 2, 0)

(6,6,8;1,1, 7

(3, 5,13; 4, 4,16)
(3, 5,13; 4, 6, 0)

(6,6,8;1,1, 9

(6,6,8; 1, 1,11)

(6,6,8;1,5,5)

(5,7, 9; 4, 6,14)
(5,7, 9; 4,10, 4

(3,5,13; 6, 4, 0)

(3, 5,13; 8, 4, 2)

(6, 6,8; 1, 5,11)

(6, 6,8; 1,9, 1)

(5, 7,9; 4,10,14)
(5,7,9; 6, 4, 4

(5,7,9; 6,6, 0
(5,7,9; 6, 6,12)

(3, 7,11; 2, 2, 2)

(3, 7,11; 2, 6, 2)

(6, 6,8;1,9,7)

(3, 7,115 4, 2, 2)

(6,6,8;3,1,9
(6,6,8;3,7,7

(3, 7,11; 4, 4,16)
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(7,7,7;2,2,2)
(7,7,7;2,2,6)

(3,9, 9; 2,38, 0
(3,9, 9; 4, 4,16)
(5, 5,11; 0, 4,10)
(5, 5,11; 0, 4,14

(5, 5,11; 2, 0, 8)

(6,6,8;5, 5,7
(6,6,8; 5,11, 7)

c7,7,7;, 2, 2,10)
c7,7,7; 2, 6,10)

c7,7,7;, 2,8, 8)

21 +++

+++ z

N N
< 0 ©
< < ©
< < ©
M~~~
N~~~
M~~~
N T
I i)
N 0N O
~— ~
o N « «
NN NN
—
~
0 0 W W
0 0 W W
N S
N N AN
o o oo
NN NN
N 0 N
[N NS T
~
Mmoo
™ v~ v~

(
(
(
(

A.2 Our version of catalogue [21]

(3,3,3;2,2,2)

9 +++

+++ z

7 +++

+++ z

11 +++

+++ z

(1,1, 7; 2, 0, 2)
(1, 3,5;2,2, 0

(1, 3,3;,2, 2,0
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(1,7,9; 4,6, 0

(3, 3,11; 2, 2, 2)

(1, 7,7;2,6, 0

(3,3,9;0, 2, 4
(3,3,9;0, 2, 8

(1,3,7;2,2, 0
(1, 5, 5; 2,2, 0
(1, 5, 5; 2, 4, 0)

(3, 3,5;0,2, 4
(3,3,5;2,2,4)

(3, 3,11; 2, 2, 4)

(3, 3,11; 2, 2,10)
(3,5,9; 2,0, 2
(3,5, 9; 2, 4, 0
(3,5,9; 4,0, 2
(3,5,9; 4, 2,0
(3,5,9; 4, 4, 2)
(3,5, 9; 4, 4,12)
(3,5, 9; 4, 6, 0)
(3,7,7; 2,2, 2
(3,7,7; 2,6, 2)

(3,3,9 2,0, 2

(3,3,9; 2,0, 4
(3,3,9; 2,0, 6)
(3,3,9;2,2, 8

12 +++

+++ z

(3,5,7; 2,4, 0

(3,5,7; 2, 4,2
(3,5,7; 4,4, 0

(3,5,7; 4, 4,10)
(5,5,5;0, 4, 4

(5,5,5;2, 2,2

(5,5, 5; 2,2, 6)
(5,5, 5;4,4,4)

(2, 4, 6; 3, 3, 1)
(4,4,4;1,1,1)

(4,4,41,1,5)

(4,4, 4;3,3,3

(3,7, 7; 4, 4, 0)

13 +++

+++ z

(3,7,7; 4, 4,12)
(3,7,7; 4,6, 0

(1, 1,115 2, 0, 2)

16 +++

+++ z

(1, 3,9; 2,2, 0
(1, 3,9; 4, 2,0
(1,5,7;,2, 2,0
(1,5,7;, 2,4, 0

(3,3,7;2,2,2
(3,3,7;2,2,6)

(3,5,5; 2,40
(3,5,5; 4,4 2

(5,5,7;0, 2, 8)
(5,5, 7; 0, 4, 6)

(2, 4,10; 3, 3, 1)

(2, 4,10; 5, 3,13)
(2,6,8; 3,3, 1)

(5,5,7;0, 4,10

(5,5,7;,2,0,2)
(5,5,7; 2,0, 4
(5,5,7; 2,0, 6)
(5,5,7;2,0,8)
(5,5,7;,2,2,8)
(5,5,7; 2, 4, 2)
(5,5,7; 2, 4, 6)
(5,5,7; 2,6, 2)
(5,5,7; 2, 6, 6)

(5,5,7;4,0,6)
(5,5,7;4,2,4

(5,5,7; 4,4, 4)
(5,5, 7; 4, 4, 6)

(2,6, 8; 3, 5,13)
(2, 6,8; 5,3, 1
(4, 4,8;1, 1, 1

(4, 4,8;1,1, 9

(4, 4, 8;
(4, 4, 8;

1, 3, 5)

= 14 +++

+++ z

D)

1, 5,

(4,4,8; 3,1, 7

(2, 2,10; 3, 1, 3)

(4, 4,8; 3,3, 7

(2,6,6;3, 3,1
(2,6,6;3,5,1)

(4, 4,8;3,7,3)

(4, 6, 6;
(4, 6, 6;
(4, 6, 6;

1, 1
1, 1, 9

1,

(4,4,6;1,1, 1

(4,4,6;1,1,3)

D)

1, 7,

(4,4,6;1,1,5)

(4,6, 6; 3,5, 3)

(4, 4,6; 1,1, 7

(4, 6, 6; 3, 5,11)
(4,6, 6; 5,5, 3)

(4, 4,6; 1,5, 1)

= 18 +++

+++ z

(4, 4,6; 1, 5, 5)

(4,4,6;3,1,5)

(2,6,10; 3, 3, 1)

= 17 +++

+++ z

(4, 4,6; 3,3, 3
(4, 4, 6; 3, 3, 5)

(2, 6,10; 3, 5, 1)

(2, 6,10; 3, 5,15)
(2, 6,10; 5, 3,15)
(2, 6,10; 5, 5,15)
(2,8,38; 3,3, 1
(2,8, 38; 3,5, 1

(1, 1,15; 2, 0, 2)

(1, 3,13; 2, 2, 0)

= 15 +++

+++ z

(1, 3,13; 4, 2, 0)

(1, 3,13; 6, 2, 0)

(1, 3,115 2, 2, 0)

(1, 5,115 2, 2, 0)

(1,5, 9; 2,2, 0
(1,5,9; 2,4, 0
(1,5,9; 4, 2,0
(1, 5, 9; 4, 4, 0)
(1, 7,7, 2,2, 0

(2,8,8; 5,5, 1)

(1, 5,11; 2, 4, 0)

(4, 4,10; 1, 1, 1)

(1, 7,9; 2,2, 0
(1,7,9; 2,6, 0)
(1,7,9; 4,2, 0

(4,4,10; 1, 1, 3)

(4,4,10; 1, 1, 5)
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(5,7,7;2,2,10)

(5,7,7;, 2, 6,0
(5,7,7; 2, 6,4
(5,7,7;, 2,8, 0
(5,7,7; 2,8, 2)
(5,7,7; 4, 4, 2)
(5,7,7; 4, 6, 4)

(1, 7,115 2, 6, 0)

(4, 4,10; 1, 1, 7

(1,9,9 2,2, 0
(1,9,9; 2,4, 0
(1,9,9; 2,6, 0
(1,9,9; 2,8, 0
(1,9,09; 4, 4, 0)
(1,9,9; 4, 6, 0)

(3, 3,13; 0, 2, 4

(4, 4,10; 1, 1, 9

(4, 4,10; 1, 1,11)

(4, 4,10; 1, 5, 1)

(4, 4,10; 1, 5, 7

(4, 4,10; 1, 5, 9

(4, 4,10; 3, 1, 9

(5,7, 7; 4, 6,12)

(5,7, 7; 6, 6, 2)
(5,7,7; 6,6, 4)

(4, 4,10; 3, 3, 3)

(3, 3,13; 0, 2,12)

(4, 4,10; 3, 3, 7)

(3,3,13; 2, 0, 2)

(4, 4,10; 3, 3, 9

(3, 3,13; 2, 0,10
(3, 3,13; 2, 2, 8

(4, 4,10; 3, 7, 7

20 +++

+++ z

(4,6,8; 1,1, 1)

(3, 3,13; 2, 2,12)

(4,6,8; 1,1, 3)

(3, 3,13; 4, 2, 4 (2, 2,16; 3, 1, 3)

(4, 6, 8; 1, 1,11)
(4,6,8; 1,5, 3)

(2, 2,16; 3, 1, 9)

(3, 5,11; 2, 4, 0)

(3, 5,11; 2, 4, 2) (2, 4,14; 3, 3, 1)

(4,6,8; 1,7, 1

(2, 4,14; 5, 3,17)

(3, 5,11; 4, 4, 0)

(4,6, 8;3,5,13)

(4,6, 8; 3,9, 3)
(4, 6, 8; 3, 9,13)

(4,6,8;5,1,3)

(2, 6,12; 3, 3, 1)

(3, 5,11; 4, 4, 2)

(2, 6,12; 3, 5,17)
(2, 6,12; 5, 3, 1)

(3, 5,11; 4, 4,14

(3, 5,11; 6, 4, 0)

(2, 6,12; 5, 5,17)
(2,6,12; 7, 3, 1)

(3,7, 9; 2,0, 2
(3,7, 9; 2,4, 2
(3,7, 9; 4, 0, 2)
(3,7, 9; 4, 2, 0

(3,7,9; 4, 4, 0)
(3,7,9; 4, 4, 2)

(3,7,9; 4, 4,14)

(4,6,8;5,3, 1

(4,6, 8;5,5,3)
(4, 6, 8; 5, 5,11)

(4,6,8;5,7, 1)

(2, 8,10; 3, 3, 1)

(2, 8,10; 3, 5, 1)

(2, 8,10; 3, 7, 1)

(4, 6, 8; 5, 7,11)
(4,6, 8;5,7,13)

(6,6,6;1,1, 1)

(2, 8,10; 5, 3,17)
(2, 8,10; 5, 5,17)
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( 4, 4,12; 1, 1,13)

(5,5, 9; 0,4, 4
(5,5, 9;0, 4, 6
(5, 5,9; 0, 4,12)

(5,5,9; 2,0, 2
(5,5,9; 2, 0,10)

(5,5,9;2,2,2
(5,5,9; 2, 2,10

(5,5,9; 2,6, 2

(6,6,6;1,7,7
(6,6, 6;3,3,5)

(6, 6, 6;3,3,7)
(6, 6, 6; 3, 5, 5)
(6, 6, 6; 5,5, 5)

(4,4,12; 1, 5, 1)

( 4, 4,12; 1, 5, 5)

(4, 4,12; 3, 1, 5)

( 4, 4,12; 3, 1,11)

(4, 4,12; 3, 3, 3)

( 4, 4,12; 3, 3,11)

= 19 +++

+++ z

(4, 4,12; 3, 7, 3)
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= 21 +++

+++ z

(4, 6,10; 5, 5, 1)

( 4, 6,10; 5, 5,13)
( 4, 6,10; 5, 7,13)
( 4, 6,10; 5, 9, 3)

(3,9,09; 4, 8, 2
(3,9,9; 6,6, 2)
(5, 5,11; 0, 2, 4)

(1, 1,19; 2, 0, 2)

(1, 1,19; 2, 0, 6)

(1, 3,17; 2, 2, 0)

(4,6,10; 7, 1, 1)

(5, 5,11; 0, 2,12)
(5, 5,11; 0, 4,10)
(5, 5,11; 0, 4,14

(1, 3,17; 4, 2, 0)
(5, 5,11; 2, 0, 2)

( 4, 6,10; 7, 3,15)
(4, 6,10; 7, 5, 3)

(1, 3,17; 8, 2, 0)

(1, 5,15; 2, 2, 0)

(4,8,8; 1,1, 1)

(1, 5,15; 2, 4, 0)

(4, 8,8;1, 1,13)

(4,8,8;,1,7,3)

(5, 5,11; 2, 0, 6)

(1, 5,15; 6, 2, 0)

(1, 5,15; 6, 4, 0) (5, 5,11; 2, 0, 8)

(4,8,8; 1,9, 1

(5, 5,11; 2, 0,10)
(5, 5,11; 2, 0,12)

(5, 5,11; 2, 2, 8)

(1, 7,13; 2, 2, 0)

(4,8,8;1,9,13)

(4, 8,38;3,3,1)

(1, 7,13; 2, 6, 0)

(1, 7,13; 4, 2, 0)

(4, 8,8; 3,5, 1)

(5, 5,11; 2, 2,12)

(5, 5,11; 2, 4, 2)

(1, 7,13; 4, 6, 0)

(4,8,8;3,7,15)

(4,8,8;5,5, 1)

(1, 7,13; 6, 2, 0)

(5, 5,11; 2, 4, 6)

(1, 7,13; 6, 6, 0)
(1, 9,11; 2, 2, 0)

(4,8, 8;5,5,13)

(4,8,8;5,7,1)

(5, 5,11; 2, 4,10)

(5, 5,11; 2, 6, 2)

(1, 9,11; 2, 4, 0)

(4,8,8;5,7,3)
(6,6,8; 1,1, 1)

(5, 5,11; 2, 6, 8)

(1, 9,11; 2, 6, 0)

(5, 5,11; 2, 6,10)
(5, 5,11; 4, 0,10

(1, 9,11; 2, 8, 0)
(5, 5,11; 4, 2, 4)

(6,6,8; 1,1, 3)

(3,3,15; 2, 0, 4)

(6,6,8; 1,1, 5)

(3, 3,15; 2, 2, 2)

(6,6,8;1,1, 7

(3, 3,15; 2, 2, 6) (5, 5,11; 4, 2, 8)

(6,6,8; 1,1, 9

(5, 5,11; 4, 4, 8)

(3, 3,15; 2, 2,14)
(3, 5,13; 2, 0, 2)

(6, 6,8; 1, 1,11)
(6, 6, 8;1, 3,7
(6, 6, 8; 1, 3, 9
(6, 6, 8 1, 5, 5)

(5, 5,11; 4, 4,10

(5, 5,11; 4, 8, 4)

(3,5,13; 2, 4, 0)

(5, 5,11; 4, 8, 8)

(3, 5,13; 4, 2, 0)

(5,7,9;0, 2, 2)
(5,7,9;0, 2, 4

(3, 5,13; 4, 4,16)
(3, 5,13; 4, 6, 0)

(6, 6,8; 1, 5,11)

(6,6,8;, 1,7, 7

(5,7,9; 0, 2,12)
(5,7,9; 0, 4,14)

(5,7, 9; 0, 6, 4
(5,7,9; 2,0, 2)
(5,7,9; 2, 0,12)
(5,7,9; 2, 2, 4
(5,7, 9; 2, 2,12)
(5,7, 9; 2, 4, 4

(5,7,9; 2,6, 0
(5,7,9; 2,8, 0
(5,7,9; 2,8, 2)
(5,7,9; 4, 0, 2)

(3,5,13; 6, 4, 0)

(6,6,8; 1,9, 1

(3,5,13; 8, 4, 2)

(6,6,8; 1,9, 7

(3, 7,115 2, 2, 2)

(6,6,8; 1,9, 9

(3, 7,11; 2, 6, 2)

(6, 6,8; 3,1, 9

(3, 7,11; 4, 2, 2)

(6, 6, 8;3,3,9)
(6, 6,8;3,5,7)
(6, 6, 8; 3,7, 3)
(6, 6,8; 3,7, 7
(6, 6, 8; 3,11, 3)
(6, 6, 8; 3,11, 5)
(6, 6, 8; 3,11, 7)
(6, 6, 8; 3,11, 9)
(6, 6, 8; 5,1, 7
(6, 6, 8 5, 3, 5)
(6, 6,8;5,3,7)

(6, 6, 8; 5, 5, 7)
(6,6, 8; 5,11, 7)

(3, 7,11; 4, 4, 0)

(3, 7,11; 4, 4,16)

(3, 7,11; 4, 6, 0)

(3, 7,11; 4, 6, 2)

(3, 7,11; 4, 8,16)

(3, 7,11; 6, 2, 2)

(3, 7,11; 6, 4, 0)

(5,7, 9; 4, 0,14)
(5,7,9;4,2,2)
(5,7, 9; 4, 6, 0)

(5,7, 9; 4, 6, 2)
(5,7,9; 4,6, 4)

(3, 7,11; 6, 6, 0)

(3,9,9;0, 2,2
(3,9, 9; 0, 4, 2)

(3,9, 9;2, 4,0
(3,9,9; 2,38, 0

(3,9,09; 4, 4,2

(5,7,9; 4, 6,14)
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(7,7,7;2, 2, 6)
c7,7,7; 2, 2, 8

(5,7,9; 6, 8,12)
(5,7,9; 6,10,12)
(5,7,9; 6,10,14)

c7,7,7;0, 2, 2)

(5,7, 9; 4,10, 4
(5, 7,9; 4,10,14)
(5,7,9; 6,0, 4
(5,7,9; 6, 4 0
(5,7,9;6, 4, 4
(5,7,9; 6, 6,0
(5,7,9; 6, 6,12)
(5,7, 9; 6, 6,14)
(5,7,9; 6,8, 2)

c7,7,7;, 2, 2,10)
c7,7,7; 2, 6,10)
c7,7,7;, 2,8, 8)
c7,7,7; 4, 4, 4)
7,7, 7; 4, 4, 8)
7,7, 7; 4, 6, 6)
(7,7,7;, 6,6, 6)

cr, 7, 7; 0, 2,10)
7,7, 7;0, 4, 4
(7, 7,7; 0, 6, 6)
c7,7,7;, 2, 2, 2)

c7,7,7;, 2, 2, 4
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Index of isomorphism classes

The Appendix contains a list of fundamental groups coded by admissible 6-tuples (see Appendix C).
The following format of entries is used. Each entry fills up two lines. First item is the code of the
isomorphism class; L is the code for lens space (including S* x $2), S is the code for decomposable 3-
manifold of genus two and P is the code for prime genus two 3-manifold. The second item determines
the presentation of fundamental group of given class with the respective GAP code; if the group is
infinite, the code is always [00,?]. Third item is the respective homology group. Indexes of 6-tuples
representing the isomorphism class (see Appendix C) resides in the second line of the entry. Third
line of a record in the sublist of acyclic fundamental groups contains a 6-tuple with with the least
index in the list of representatives.

Cyclic groups

L.]. Wl(f)zlg[].,].] Hl(f):].
f =348

L.2 7T1(f) = ZQ =~ [2, 1] Hl(f) = ZQ
f = 89,198,252

L.3 m(f) =274 2[4,1] Hy(f) =24
f =353

L4 m(f) =% = [51] Hy(f) =Zs
f =52,96,229, 307, 362, 424

L5 m(f)=12Z¢=16,2] Hi(f) =Zs
f = 204,346

L.6 m(f)=2%;2[7,1] Hy(f) =77
f=213,422

L7 m(f) =2y =19,1] Hi(f) =Zo
f =365

L.8 m(f)=2Zn =[11,1] H\(f) =2
f = 205,352

L.9 1 (f) = Zl2 = [127 2] Hl(f) = Zl2

f = 28,46, 106, 138, 306, 386

107



108 3-manifolds of Heegaard genus at most two

L.10 7 (f) = Z13 = [13,1] Hi(f) =Zas
f=27,99,103,293, 298, 351

L.11 wl(f):Zw% [1671] Hl(f):ZM}
f =122,129,183,206, 370

L.12 7w (f) = Zy7 = [17,1] Hy(f) = Za7
f =400

L.13 wl(f):Zlg% [1872] Hl(f):Z18
f =105, 305

L.14 wl(f):Zlgé [1971] Hl(f):Z19
f =123,126,147, 363, 366, 409

L.15 7T1(f) = Zgl = [2172] Hl(f) = ZQl
f=124,156,212,421

L.16 71(f) = Zos4 = [24,2] Hy(f) = Zaa
f = 288,369

L.17 mi(f) = Zos = [25,1] Hi(f) = Zas
f =287

L.18 71 (f) = Zas = [26,2] Hi(f) = Z2s
f =388

L.19 7 (f) =7Z 2 [00,7) Hy(f)=1Z
f =98,153,292

Free products of finite cyclic groups

S.1 Tr]_(f):ZQ*ZQg[OO,?] Hl(f):ZQXZQ
f=1,10,24,60,91, 195,239, 281, 358, 360

S.2 Wl(f):ZQ*Zgg[OO,?] Hl(f):ZQXZ3
f=13,8,25,56,57,58,63,100,102,113, 117, 121, 148, 201, 238, 241, 244, 291, 295, 355, 375

S.3 Wl(f):ZQ*Z4g[OO,?] Hl(f):ZQ><Z4
f=15,21,29,151,233, 234,235,279, 361, 391

S.4 Tr]_(f):ZQ*ZSg[OO,?] Hl(f):ZQXZ5
f =15, 16,48, 50, 119, 237, 280, 283

S.5 Wl(f):ZQ*Zﬁg[OO,?] Hl(f):ZQXZG
f =35,88,222,236

S.6 Tr]_(f):ZQ*Z’?g[OO,?] Hl(f):ZQXZ7
f=175,76,77,187,189,192,397,403, 412

S.7 Wl(f)ZZQ*Zgg[OO,?] Hl(f):ZQXZgg
f =164,165, 337,341

S.8 Wl(f):ZQ*Zgg[OO,?] Hl(f):ZQXZQ
f = 315,316,317

S.9 Wl(f):Z;g*Zgg[OO,?] Hl(f):Z;),XZg
f=6,7,42,43,118, 120, 240, 245

S.10 7T1(f)=Z3*Z4§[OO,?] Hl(f):Z3 ><Z4
£ =17,18,90,93, 180, 181, 242, 243

S.11 7T1(f)223*Z5g[OO,?] Hl(f):Z;), X Zs

f =36,37,38, 39,196, 197, 200, 202



Appendix B

109

S.12 7T1(f) = Z3 * Zﬁ = [OO, ?]
f = 178,79, 356,357
S.13 7T1(f) = Zg * Z7 = [OO, 7]
f =166,167,168,169,170,171
S.14 7T1(f) = Z3 * Zg = [OO, ?]
f = 318,319, 320, 321
S.15 7T1(f) = Z4 * Z4 = [OO, 7]
f = 40,41, 338, 340
S.16 7T1(f) = Z4 * Z5 = [OO, 7]
f=280,81,82,83
S.17 7T1(f) = Z4 * Zﬁ = [OO, ?]
f=172,173
S.18 7T1(f) = Z4 * Z7 = [OO, 7]
f = 322,323,324, 325, 326, 327
S.19 7T1(f) = Z5 * Z5 = [OO, ?]
f=174,175,176,177,178,179
S.20 7T1(f) = Z5 * Zﬁ = [OO, ?]
f = 328,329,330, 331
S.21 7 (f)=Zo*xZ = [0,7]
f =12,23,45,186, 368
S.22 mi(f)=7Z3*Z = [0,7]
f = 14,231,232, 332
S.23 m(f) =Zs+Z = [0,7]

=74
S.24 7 (f)=7Zs*Z = [0,7]
f = 313,314

Acyclic fundamental groups

P.1 m(f)={a,b]|a®=b>=(ab)?) = [120,5]
f = 55,9266, 262
(5,5,5,4,4,4)

P.2 7 (f)={(a,b]|a” =b>=(ab)?) = [00,7]
f = 215,230, 255,339,433
(5,5,9,4,4,8)

P.3 m(f) = (a,b]|a*=b3 = (ab)?) = [48,28]
f =34,51,144, 265, 300, 395
(4,4,6,3,3,5)

P.4 7 (f)=(a,b]|a® =b*= (ab)?) = [00,7]
f =150,199, 303
(4,6,8,3,3,11)

P.5 7 (f)={(a,b]a®=0b3=(ab)?) = [00,7]
£ = 384,413

(5,5,11,4,4,10)

Hy(f) =Zs
Hy(f) =173
Hi(f) =Zs
Hy(f) =Za
Hy(f) =Za
Hi(f) =Za
Hy(f) =Za
Hy(f) = Zs
Hy(f) =Zs
Hy(f) = Z2
Hi(f) =Zs
Hy(f) =24
Hy(f) =Zs
Hi(f) =1

Hi(f) =1

Hy(f) = Z2
Hi(f) = Z2
Hy(f) = Z2

X Zg
X L
X 7.8
X 2y
X Zs
X Zg
X L

><Z5

X 7
X 7.

X 7



110 3-manifolds of Heegaard genus at most two

P.6 7T1(f) = <a b ‘ a = b2 (ab) > [8,4] Hl(f) = Zg X Zg
f=4,33,54,214, 302, 309
(3,3,3,2,2,2)

P.7 Wl(f)z(ab\a =b? = (ab)?) = [16, 9] Hi(f) =7 xZs
f=20,133,152,210
(3,3,7,2,2,6)

P.8 ™1 (f) = <O,,b ‘ Cl6 = b2 (ab) > [2474] Hl(f) = ZQ X ZQ
f=86
(3,3, 11,2,2,10)

P.9 7T1(f) <a b ‘ a = b2 (ab) > [32720] Hl(f) = Zg X Zg
f =335
(3,3,15,2,2, 14)

P.10 71(f) = (a,b | a® = b* = (ab)?) = [00, 7] Hi(f) =7 xZs
f=267,347
(4,6,10,5,5,13)

P.11 7T1(f) = <a,b ‘ a3 = b3 = (ab)2> = [2473] Hl(f) = Z3
f=13,22,72,161, 221,272,294, 432
(4,4,4,3,3,3)

P.12 7i(f) = (a,b | a* = b3 = (ab™?)73) =2 [00, 7] H(f)=1Zs
f=1228,379,429
(5,7,7,4,6, 12)

P.13 7T1(f) <a b ‘ a = b3 (ab) > [00,7] Hl(f) = Z3 X Z3
f=69,111,284,404
(4,6,6,1,1,9)

P.14 7(f) = (a,b | a® = b? = (ab)?) = [12,1] Hi(f) =174
f=9,31,71,108, 136, 158, 301, 378,405,410
(3,3,5,2,2,4)

P.15 71(f) = (a,b | a® = b = (ab)?) = [20, 1] Hi(f) =274
f=47,268,373
(3,3,9,2,2,8)

P.16 7T1(f) = <a,b ‘ a’=b2 = (ab)2> = [287 ].] Hl(f) =7y
f =185
(3,3,13,2,2,12)

P.17 7 (f) = (a,b | a* = b%a= 162, 0% = a®b Hi(f) =124
f =428
(r,7,7,2,6,10)

P.18 ™1 (f) = <a,b ‘ a2 = (ab2)2 b2 = (azb)2> = Hl(f) = Z4 X Z4
f =253
(5,5,5,2,2,2)

P.19 m1(f) = (a,b | a® = (a=1b?)2,b% = (a?b)?) Hi(f) =74 X Z4
f=109,216
(5,5,7,2,4,2)

P.20 7i(f) = (a,b | a® = b° = (ab)?) = [00, 7] Hy(f)=1Zs
f =282,359
(4,8,8,5,5,13)

P.21 mi(f) = (a,b | a” =b% = (a72b)3) = [00, 7] Hi(f)=17Zs
f =385,431

(5,5,11,4,8,4)
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P.22

P.23

P.24

P.25

P.26

P.27

P.28

P.29

P.30

P.31

P.32

P.33

P.34

P.35

P.36

P.37

7 (f) = {a,b | a®b~la = ba= 103 =
f = 423,430
(7,7,7,2,2,2)

mi(f) = (a,b| a® =b" =
£ = 261,310,349, 416
(4,6,10,3,5,3)
m(f) ={a,b | a® =b> = (ab™?)7?) = [00,7]
f = 406

(6,7,9,4,6,14)

(a®b?)?) & [00,7]

(a%b)?) = [00,7]

m1(f) = {a,b | a® = b* = (ab)~2) = [24,11]
F =11, 44,104,256

(4,4,4,1,1,1)

m(f) = {a,b | a* = b* = (ab™1)?) = [48,27]

F = 30,84,107, 224
(4,4,6,1,5,1)

T (f) = {a,b| a® =% =
f = 269,275,382, 402
(4,6,10,5,9,3)

m(f) = (a,b | a® = b* = (a®b)*) =
F = 135,162,190, 227, 381, 414
(4,4,10,3,3,3)

T (f) = {a,b | a® = b* = (a®b)?) =2 [24, 1]
F=12,19,32,101, 211, 223, 254, 260, 380, 426
(4,4,4,1,1,5)

7 (f) = (a,b | a® = b? =
£ = 85,110,115, 251
(3,3,11,2,2,4)

7 (f) = {a,b | a” = (a*b)?, b?
f=334,376, 383

(3,3, 15,2,2,6)

m(f) = (a,b | a* = b* = (ab)?®) = [00,7]
f = 274,427
4,8,8,1,1,13)

7 (f) = (a,b | a* = b* =
f = 146,344, 371
(4,6,8,3,9,13)
7T1():<ab\a—b3 (*lb)>“’[723]
f=29,49,65,67,149, 218, 266, 364, 399,417
(4,4,6,1,1,7)

(a%b)?) = [00, 7]

840, 13]

(a%)?) = [40, 1]

— (a2)?) = [56, 1]

(a™10)?) == [00, 7]

m(f) = (a,b | a* =% = (a)?) = [00,7]
f=141,225

(4,6,8,1,1,11)

7Tl(f) = <a,b ‘ a® =b = (ab)3> = [0077]

~
|
[N}
ot
&>
S
o
oo

(4,6,10,1,1,13)

m(f) = (a,b | a® = b* = (ab)~?) = [00,7]
f =154

(6,6,6,1,1,1)

Hi(f) = Zs
Hi(f) = Zs
Hi(f) = Zs
Hi(f) = Zs
Hi(f) = Zs
Hi(f) = Zs
Hi(f) =27
Hi(f) = Zs
Hi(f) = Zs
Hi(f) = Zs
Hi(f) = Zs
Hi(f) = Zs
Hi(f) = Zo
Hi(f) = 2o
Hi(f) = Zo
Hi(f) = 2o

><Z5

XZQ

XZQ

XZg

XZQ

XZg
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P.38 mi(f) = (a,b | a* = b = (ab)3) = [240, 102] Hq(f) =Zo
= 62,95,134, 145,393
4,4,8,1,1, 9)
P.39 7(f) = {(a,b]| a® = b = (a®b%)?) = [40, 11] Hi(f) = Z1o X 7o
= 247,278
4,4,12,1,1, 5)
P.40 (f) = <O, b ‘ Cl = b2 (U,b) > [80,27] Hl(f) = Zlg X ZQ
= 61,193,387
4,4,8,1,1,1)
P.41 (f) = <a b ‘ 6 =p2 = (ab*1)2> = [120721} Hl(f) = Zqg X Zo
= 131,390
4,4,10,1,5, 1)
P.42 (f)={(a,b|a®=b"2=(ab™1)3) = [1320, 14] Hi(f)=Zn
= 130, 203, 253,277, 304
4,4,10,1,1, 11)
P.43 (f) = {(a,b ] a® =b> = (a®>b~1)2) = [60, 2] Hq(f) =72
= 132,157,184, 308,415
4.4, 1O 1,5, 7)
P.44 (f) = <O,,b ‘ Cl = b3 = (0,_1b)2> = [OO, 7] Hl(f) = le
= 249, 350
4,4,12,1,1, 13)
P.45 (f) = {(a,b | a® =b> = (a®b~1)2) = [1560, 13] Hq(f) =Zas
= 271,299, 342
4,6,10,7,3, 15)
P.46 (f) = {(a,b ] a* =b% = (ab™1)?) = [336, 115] Hi(f) =Z4
=70, 188,208, 389, 420
4,6,6,1,7,1)
P.47 (f) = (a,b | a® = b? = (ab)~2) = [168, 29] Hi(f) =714 X Zs
= 246
4,4,12,1,1, 1)
P.48 (f) = {(a,b | a® =b> = (a=2b)?) = [120, 15 Hq(f) =75
=94,114,127,142,160, 226
,7,7,2,2,2)
P.49 7i(f) = (a,b | a* = b3 = (ab™1)3) = [00, 7] Hi(f) =Z5
= 155,377
6,6,6,1,1,9)
P.50 ) = <a,b ‘ a = b2 (ab) > [48 ].] Hl(f) = Z]_ﬁ
= 26,87,182,217,367
4,4,6,1,1,1)
P.51 (f)={(a,b ] a®=0b>= (ab~1)?) = [80,1] Hi(f) =Zs
f=64,219,333,398
4,4,8,1,5,1)
P.52 )= (a,b| a* =b* = (a7 1b)3) = [0, ?] Hy(f) =716
=290
6,6,8,1,1,1)
P.53 = (a,b ‘ Cl4 = b4 = (&b)_2> = [OO, ?] Hl(f) = Z16 X ZQ
7
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P.54

P.55

P.56

P.57

P.58

P.59

P.60

P.61

P.62

P.63

P.64

P.65

P.66

P.67

P.68

P.69

m(f) = (a,b | a® = b3 = (a?b?)?) = [2040, 7]
f = 345,411

(3,7,11,4,2,2)

()= (0, | @ = b = (a75)2) 2 [00,7]

f =263

(4,6,10,3,9,15)

m(f) = {a,b | a® = b® = (ab™1)?) = [2280, 7]
F = 143,401

(4,6,8,1,7,1)

m1(f) = (a,b ‘ a® =b* = (a2b)72> = [607 1]

£ = 128,140, 194, 248

(4,4,10,1,1,7)

T (f) = {a,b | a® = b?ab?, a3 = ba=3b3) =2 |00, 7]
f = 396,407, 418

(5,7,9,2,4,4)

m(f) = {a,b| a® = b3 = (ab)~2) 22 [168, 22]
f = 68,207, 336,419

(4,6,6,1,1,1)

() = (b @ = b = (ab~1)%) 2 [00,7]

f = 296

(6,6,8,1,9,1)

1 (f) = (a,b | a* = b3 = (ab™2)?) =2 [528,87]
F = 264,289,343

(4,6,10,5,1,1)

() = (0, | @ = b = (ab~1)2) 2 [00,7]

f =276

(4,8,8,1,9,1)

T (f) = {a,b | a® = b? = (ab)~2) = [120, 2]
f=125,354

(4,4,10,1,1,1)

m(f) = {a,b| a” = b* = (ab™1)?) 2 [168, 4]
=250

(4,4,12,1,5,1)

mi(f) = (a,b ] a® = b = (ab™")?) = [00,7]

f =259

(4,6,10,1,7,1)

71 (f) = {a,b | a = b%a?b%,b = a®ba®) = |00, 7]
f =209, 220,372,394

(5,5,9,2,2,2)

71 (f) = {a,b | b= a®ba?,a* = b?a=1b?) =2 [0, 7]
f = 374,425

(5,5,11,2,4,2)

m1(f) = {a,b | a* = b3 = (ab)~2) 22 [624,131]
f=139,392

(4,6,8,1,1,1)

m(f) = {a,b | a® = b® = (a?b)~2) = [216, 3]
f =270,286

(4,6,10,7,1,1)

Hy(f) = Zaz
Hy(f) = Z1s
Hy(f) = Zxo
Hi(f) = Zao
Hy(f) = Zao
Hy(f) = Zn
Hy(f) = Za
Hy(f) = Za»
Hy(f) = Zaa
Hi(f) = Zoa
Hi(f) = Zoa
Hy(f) = Zaa
Hi(f) = Zoa
Hy(f) = Zaa
Hi(f) = Zas
Hy(f) = Za7
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P.70 1 (f) <a b ‘ a = b3 (ab) > [372077] Hl(f) = Z31
f =257
(4,6,10,1,1,1)
P.71 71 (f) = {a,b | a* = b3 = (ab)™3) = [0, 7] Hy(f) = Zss3
f = 285
(6,6,8,1,1,1)
P.72 71 (f) = (a,b | a® = b3 = (ab)?) = [00, 7] H(f)=Z
£ =116,137, 191
(56,5,7,4,4,6)
P.73 7 (f) = (a,b | a®ba=! = b7 1ab?, b= ta?b"t = ab~2a) = [0,?]  Hi(f) =7
f =163
(6,6,6,5,5, 5)
P.74 7(f) = (a,b | a® = b~ tab%ab™,ab"tab = b~ ta"tba™t) = [00, 7| H1(f) = Z
f =311
(6,6,8,5,5,7)
P.75 7m1(f) = (a,b | a* = b* = (ab)?) = [00, 7] H\(f)=7Z xZs
f=173,97
(4,6,6,5,5,3)
P.76 71(f) = (a,b]| a®=0b3 = (ab)3) = [00,7] Hi(f)=7Z x Zs
f = 112,297
(5,5,7,2,6,6)
P77 m(f) = {(a,b | a® = b2a~ 102, b% = a2b~'a?) = |00, 7] Hi(f) =7 x Za
f =159
(6,6,6,1,7,7)
P.78 mi(f) = (a,b | ab=2a® = b%a"2b,ba2b = a~1b?a"t) 2 [00,?] Hi(f) =Z x Zs
f:312
(



Appendix C

List of representatives

The Appendix contains full list of admissible 6-tuples coding 3-manifolds of genus at most two.
This list is the result of the full procedure described in the Chapter 4 and it is based of the list of
representatives of G-classes in Appendix A (the second catalogue in the Appendix A). The following
format of entries is used. First entry contains the number of 6-tuple in the catalogue (see also
Appendix B). The second entry contains the respective G-minimal representative. The presentation
of fundamental group follows as the last item in the first line. In the second line reside the homology
group (as first item), the center of fundamental group, the factor of fundamental group by the center
and the respective epimorphism onto the representative of isomorphism class. Some notes about
the 3-manifold, in particular the information about the space or fundamental group, are written on
the third line of entry. Question marks are written to assign unknown data. The epimorphisms
were not computed in the case of genus one (or less), decomposable 3-manifolds of genus two and
representatives of isomorphism classes.

1. (1, 3, 3, 2, 2, 00 G =Zoxo
H1:Z2XZ2 C:]. G]_/C:ZQ*ZQ —
connected sum £(2,1)#L(2,1); representative

2.(1, 1,7, 2,0, 2 Gy =Zyx+Z
H=Zyx7Z (=1 Go/C =72+ 7 —
connected sum £(2,1)#S! x S?; representative

3.(1, 3,5, 2,2, 0 Gy =7ZyxZs
H1:Z2XZ3 C:]. GB/C:ZQ*ZB —
connected sum £(2,1)#£(3,1)

4.(3,3,3,2,2,2) Gy ={ab]|a®=0b*=(ab)?)
Hy =73 xZy (=Zz Gs/C=Dy —
representative, GAP code for the group is [8,4]

5.(1, 3,7, 2,2, 0 Gy =Zo*x7y
H1=Z2XZ4 <=1 G5/<=Z2*Z4 —
connected sum L£(2,1)#L(4, 1); representative
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6.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

(1,5,5,2,2,0 G¢ =7Z3*Zs
H1=Z:;XZ3 Czl G6/<:Z3*Z3 —
connected sum £(3,1)#L(3, 1); representative

. (1,5,5, 2,4, 0 Gy =2ZyxZs

H1=Z:;XZ3 Czl G7/<:Z3*Z3 —
connected sum £(3,1)#L(3,1)

. ( 3, 3, 5, 0, 2, 4) Gg :ZQ*Zg

H1=ZQXZ3 Czl Gg/CZZQ*Zg —
connected sum £(2,1)#L£(3,1)

.(3,38,5,2,2,4) Gy ={abla®=0b*=(ab)?)

H, =74 (=17 Gy/¢ = Dg —
representative; GAP code for the group is [12,1]

( 2, 4, 6, 3, 3, 1) GlO :ZQ*ZQ

H1:Z2XZ2 C:]. G]_O/CZZQ*ZQ —

connected sum £(2,1)#L£(2,1)

(4, 4, 4,1,1, 1) Gn :<a,b|a2=b2:(ab)*2>

Hy =76 xZs (=1Zs Gu/(=Dy —
representative; GAP code for this group is [24,11]

(4, 4, 4,1, 1, 5) G2 = {a,b|ab’a=1,ababtab=! =1)

H, =7Zg C =7y Glg/C = Dg (]512 ca" b — Glg.a, ab~la — G19.b

representative; GAP code for this group is [24,1]
(4, 4, 4, 3, 3, 3) Gi3 ={a,b|a®=0%=(ab)?)
Hy =173 (=Zy Gi3/¢= A4 —
representative; GAP code for this group is [24,3]
(1, 1,11, 2, 0, 2) Gy =Z3=7Z

Hi=7Z3x7Z (=1 G114/ =735+ 7 —
connected sum £(3,1)#S! x S?; representative
(1,3,9, 2,2, 0 G5 =Zy*Zs

H1=Z2XZ5 <=1 015/<:Z2*Z5 —
connected sum £(2,1)#L(5, 1); representative
(1,3,9,4, 2,0 Gig =2Zy*Zs

H1=Z2XZ5 CZ Glﬁ/CZZQ*Z5 —
connected sum L£(2,1)#L(5,2); representative

( 1, 5, 7, 2, 2, O) G17 :Zg*Z4
H1=Z3XZ4 <=1 017/<:Z3*Z4 —
connected sum £(3,1)#L(4, 1); representative

( 1, 5, 7, 2, 4, O) Glg :Zg*Z4
H1=Z3XZ4 <=1 Glg/<:Z3*Z4 —
connected sum £(3,1)#L£(4,1)

( 3, 3, 7, 2, 2, 2) G19 :<a,b|a3262:(a2b)2>
Hy =17Zs (=2Zs Gro/¢= Dg —
(38,3,7,2,2,6) G =(ab]|a*=0b%=(ab)?)
Hy =7y xZy (=1Zy G2/C=Ds —
representative; GAP code for the group is [16,9]
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21

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

( 3, 5, 5, 2, 4, O) Ggl :ZQ*Z4
H1=Z2XZ4 <=1 GQl/CZZQ*Z4 —
connected sum

(3,5,5,4,4, 2 Gy =(ab|labta b ta=1ab"2ab=1)

H, =73 (=Zs Goo/(=Ay oo : a+— Giz.a, b— Gi3.b
(2, 2,10, 3, 1, 3) Gas =(a,b|a’*v"ta ?ba b ta’b=1,a>=1)

Hi =75 %7 (=1 Go3/C =T+ Z P23 :a— Ga.a, br— Ga.b
(2,6, 6,3, 3, 1) Gy =7Zs*Zs

H1:Z2XZ2 Czl G24/<:Z2*Z2 —

connected sum £(2, 1)#L£(2,1)

(2,86, 6, 3,5, 1) Gy =Zy*Zs3

H1=Z2XZ3 <=1 G25/<:Z2*Z3 —

connected sum £(2, 1)#L(3,1)

(4, 4,6, 1, 1, 1) G26 :<a,b|a3=b2:(ab)_2>

Hy =76 (=12Zs Ga/C=Ds —
representative; GAP code for the group is [48,1]

( 4) 4: 6’ 1, 1, 3) G27 :Zl3

Hy =73 (=713 Gar/(=1 —

lens space £(13,7)

(4, 4, 6, 1, 1, 5) Gaog =712

Hy =Zyo (=Z12 Gas/(=1 —

lens space £(12,7)

(4,4,6,1, 1,7 Gy ={ab]|a®b?=1,abab tab=! =1)
H, =79 C = Zg GQQ/C = Ay (]529 : a®%ba — G49.CL, b 1a30 — Gag.b
representative; GAP code for the group is [72,3]

(4, 4,6, 1,5, 1) Gz ={a,b|a*=0>=(ab"1)?)
Hy=Z¢xZy (=72%Z¢ Ga3/¢=Ds —
representative; GAP code for the group is [48,27]

(4, 4,6,1,5,5) Gz =(ab|blaba=1b"1a3p"1=1)

Hy =174 (=Zy G3/(=Dsg $31 a7t — Go.a, b Go.b

(4, 4,6, 3, 1, 5 Gz ={a,b|aba"tb=1,ba%bab~ta =1)

Hl = Zg C = Z4 G32/< = Dﬁ (]532 : ba’1b2a*1 — Glg.a, b2a*1 — Glg.b
(4, 4, 6, 3, 3, 3) Gz3 ={a,b|b%a®>=1ab"ta bt =1)

H1:Z2XZ2 C:ZQ G33/<:D4 ¢33:a|—>G4.a, bilHG4.b

(4, 4, 6, 3, 3, 5 G34 =(a,b]|b%ab2a=1,ab"ra " tbatb"1 =1)

H1 = Zg g = Zg G34/< = 54 (2534 : b71 — G51.a, abfl — G51.b

representative, GAP code for the group is [48,28]
( 1, 3,11, 2, 2, O) G35 :ZQ*ZG
H1:Z2XZ6 C:]. G35/<:Z2*ZG —
connected sum £(2,1)#L(6,1); representative
(1,5,9,2,2, 0 Gz =ZLzxZLs
H1:Z3XZ5 <:]. G36/<:Zg*Z5 —
connected sum £(3,1)#L(5, 1); representative
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37. (1, 5, 9, 2, 4, 0) G37 =73 x*7Zs
Hy =73x7Zs (=1 G37/C =73 * ZLs —
connected sum £(3, 1)#L(5,1)

38. ( 1, 5, 9, 4, 2, O) Ggg :Zg*Z5
Hy =73x7Zs (=1 Gag/C = Z3 * ZLs —
connected sum £(3, 1)#L(5,2)

39. ( 1, 5, 9, 4, 4, O) G39 :Zg*Z5
Hy =73x7Zs (=1 G39/C = Z3 * Zs —
connected sum £(3,1)#L(5, 2)

40. ( 1, 7, 7, 2, 2, O) G40 :Z4*Z4
H1=Z4XZ4 <=1 G40/<:Z4*Z4 —
connected sum £(4,1)#L£(4,1); representative

41. ( 1, 7, 7, 2, 6, O) G41 :Z4*Z4
H1:Z4XZ4 C:]. G41/<:Z4*Z4 —
connected sum £(4, 1)#L(4, 1); representative

42. ( 3, 3, 9, 0, 2, 4) G42 :Zg*Zg
H1:Z3XZ3 C:]. G42/<:Z3*Z3 —
connected sum £(3,1)#L£(3,1)

43. ( 3, 3, 9, 0, 2, 8) Gy =7Zs3*7Zs
H1:Z3XZ3 C:]. G43/<:Z3*Z3 —
connected sum £(3,1)#L(3,1)

44. (8, 3, 9, 2, 0, 2) Gu = (a,b|ab’a=1,ab"tab™3 =1)

Hl :Zﬁ XZQ C:ZG G44/<:D4 (]544:0,'—)G11.CL, b}—>G11.b
45. ( 3, 3, 9, 2, 0, 4) Gy = {a,b| ab~ta?baba®b~! =1,a%b"1a?b = 1,a® = 1)
H1:Z2XZ CZ]. G45/<:Z2*Z ¢45:a»—>G2.a,bn—>G2.b

46. ( 3, 3, 9, 2, 0, 6) Gy = Z1o
Hy =712 (=Z12 Gu/C=1 —

lens space £(12,7)

47.( 3, 3, 9, 2, 2, 8) Gy =(a,b|a®="b*=(ab)?)
Hy =74 (=2Zy Gar/C= Do —
representative; GAP code for the group is [20,1]

48. ( 3, 5, 7, 2, 4, 0) Gus =79 *7Zs
H1:Z2XZ5 <:]. G4g/<:ZQ*Z5 —
connected sum

49. (8, 5,7, 2, 4, 2) Ga = {(a,b|a®=0b%= (a"1b)?)
Hy =Zg C(=Zs Ga/C= A4 —

50. ( 3, 5, 7, 4, 4, 0) G5y =79 *Zs
H1:Z2XZ5 <:]. G50/<:ZQ*Z5 —
connected sum

51.( 3, 5, 7, 4, 4,10) G5 = (a,b] a* = = (ab)?)

Hy =7Zs (=2Zy G5 /(=54 —
52. ( 5, 5, 5, 0, 4, 4) Gso =1Zs
H1:Z5 §:Z5 G52/<:1 J—

lens space £(5,7)
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.(5,5,5,2,2,2 Gs3 ={ab]a®=(ab?)?b* = (a?b)?)
H1=Z4XZ4 <7 G53/<? —
representative; Eucleidean 3-manifold

.(5,5,5,2,2,6) G5 ={a,b|ba’b=1,ab"ta 0"t =1)

Hy =75 X Zo CZZQ G54/<:D4 O54 - a — Gy.a, b_1|—>G4.b
. (5,5,5,4,4,4) G =(ab|ad=0"=(ab)?
H =1 (=72 Gs5/(= 45 —

representative; GAP code for the group is [120,5]

( 2, 4,10, 3, 3, 1) G56 :ZQ*Zg
H1=Z2XZ3 <=1 G56/<:Z2*Z3 —
connected sum £(2,1)#£(3,1)

. (2, 4,10, 5, 3,13) Gs7 =7Zyx 73
H1Z2XZ3= Czl G57/<:Z2*Z3 —
connected sum £(2,1)#L£(3,1)

( 2, 6, 8, 3, 3, 1) G5g :ZQ*Zg
H1=Z2XZ3 <=1 G58/<:Z2*Z3 —
connected sum £(2,1)#L£(3,1)

( 2, 6, 8, 3, 5,13) G59 :ZQ*Z4
H1:Z2XZ4 C:]. G59/<:Z2*Z4 —
connected sum

( 2, 6, 8, 5, 3, 1) GGO :ZQ*ZQ
H1:Z2XZ2 C:]. GGO/CZZQ*ZQ —
connected sum £(2,1)#L£(2,1)

.(4,4,8,1,1, 1) Ge ={(abl|a*=0*>=(ab)72)
Hy =710 xZy (=12Zio Ge1/C=Ds —
representative; GAP code for the group is [80,27]

.(4,4,8,1,1, 9 G =(ab]|a*=0b%=(ab)?)
Hy = Zyo (=71 Ge2/C =S4 —
representative; GAP code for the group is [240,102]

.(4, 4, 8, 1, 3, 5) G63 :ZQ*Z3
H1:Z2XZ3 C:]. G63/<:Z2*Z3 —
connected sum £(2,1)#£(3,1)

.(4,4,8,1,5,1) Ges =(a,b|a®=0b%>=(ab"1)?)
Hy =76 (=2Zs Ges/C= Do —
representative; GAP code for the group is [80,1]

.(4,4,8,3,1, 7 G¢ ={a,b|ab a2t =1,ab ta®*b"tab=1)

H, =Zg (=Z¢ Gegs/C= Ay des : b2ab?ab=? — Gug.a, a b7 2ab™2 = Guo.b
.( 4, 4,8,3,3,7) G¢ =I(ab|abtatba b7t =1,b%ab"2%a = 1)

H =1 (=2Zs Ges/C= A5 de6 : b= Gss.a, ab™' — Gs5.b

. (4, 4,8,3,7, 3 G¢ =I{ab|lab la b la=1,a*%a=1)

Hy =Zg (=Z¢ Ger/¢= Ay o7 2 b30ab® — Gug.a, a1 5ab™2 — Gyg.b
.(4,6,6,1,1,1) Ge =(ab|a®>=0*=(ab)72)

Hy =Zx (=71 Geg/C= Ay —

representative; GAP code for the group is [168,22]
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69. ( 4, 6, 6, 1, 1, 9) Gg = (a,b|a®=0>=(ab)?)
H1:Z3XZ3 CZZ GGQ/<:A+(37373) o

representative
70. ( 4, 6, 6, 1, 7, 1) Gz ={a,b|a*=0>=(ab"1)?)
Hy =714 (=Z1s Gro/C= 5 -

representative; GAP code for the group is [336,115]
71.( 4, 6, 6, 3, 5,3 Gr ={a,b|ab ta b7t =1,b%a%=1)

H, =74 CZZQ G71/<:D6 ¢71 : b— Gy.a, a_1|—>G9.b
72. ( 4, 6, 6, 3, 5,11) G7o = {a,b| b ta?b~ta !t =1,ab"2ab=1)
H, =17Zs (=Zy Gr/({=4 ¢r2 ta— Giz.a, b— Gi3.b

73.( 4, 6, 6, 5,5, 3 Gz ={a,b|a*=0b"=(ab)?)
H1=Z2XZ CZZ G73/<:A+(474,2) —
Eucleidean manifold; representative

74. (1, 1,15, 2, 0, 2) Gry =Zy*7
H1=Z4XZ <=1 G74/<:Z4*Z —
connected sum £(4,1)#S! x S?; representative

75( 1, 3,13, 2, 2, O) G75 :ZQ*Z7
H1:Z2XZ7 <=1 G75/<:Z2*Z7 —
connected sum £(2,1)#L(7,1); representative

76( 1, 3,13, 4, 2, O) G76 :ZQ*Z7
H1:Z2XZ7 <=1 G76/<:Z2*Z7 —
connected sum £(2,1)#L(7, 2); representative

77. (1, 3,13, 6, 2, 0) G7p =ZoxZy
H1:Z2XZ7 C:]. G77/<:Z2*Z7 —
connected sum £(2,1)#L(7, 3); representative

78( 1, 5,11, 2, 2, 0) G7g :Z3*ZG
H1:Z3XZ6 CZQ G7g/<:Z3*ZG —
connected sum £(3,1)#L(6,1); representative

79( 1, 5,11, 2, 4, 0) G79 :Z3*ZG
H1:Z3XZ6 C:]. G79/<:Z3*ZG —
connected sum £(3,1)#L(6,1)

80. (1, 7, 9, 2, 2, 0) Ggy =7y *7Zs
H1:Z4XZ5 C:]. G80/<:Z4*Z5 —
connected sum L£(4, 1)#L(5, 1); representative

81( 1, 7, 9, 2, 6, O) Ggl :Z4*Z5
H1=Z4XZ5 <=1 G81/<:Z4*Z5 —
connected sum £(4, 1)#L£(5,1)

82. ( 1, 7, 9, 4, 2, 0) G82 :Z4*Z5
Hi =74 xX7Zs <=1 G82/<:Z4*Z5 —
connected sum L£(4, 1)#L(5,2); representative

83. ( 1, 7,9, 4, 6, 0) Ggg :Z4*Z5
H1=Z4XZ5 <=1 G83/<:Z4*Z5 —
connected sum L£(4, 1)#L(5,2)

84. ( 3, 3,11, 2, 2, 2) Gss = {a,b|ab3ab™t =1,ab ta3b"t =1)
H1=Z6XZ2 CZZ(; G84/<:Dg ¢84:a|—>G30.a, b’—>G30.b
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85

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

(3, 3,11, 2, 2, 4) Gss = (a,b| a®=b*(a®b)?)

Hy =73 (=74 Gss5/¢=Dio —
representative; the GAP code for the group is [40,1]

(3, 3,11, 2, 2,10) Gss = (a,b | a® =b? = (ab)?)
Hy=7ZyxZy (=2Zy Gss/(= D2 —
representative; the GAP code for the group is [24,4]
(3,5,9, 2,0, 2 G =(ab]|ab3a=1ab"tab ta?®=1)
Hy = Zs (=2Zs Gsr/(=Ds P57 1 b— Gog.a, ab™ — Gag.b
(3,5,9, 2, 4, 00 Ggg =7y *Zg

H1=Z2XZ6 <=1 GSg/CZZQ*ZG —

connected sum

(3,5,9, 4, 0, 2) Ggg =7Zo

Hy =7Zs (=Zy Gg/C=1 —

lens space £(2,1); representative

( 3, 5, 9, 4, 2, O) Ggo :Zg*Z4

H1=Z3XZ4 <=1 GQO/<:Z3*Z4 —

connected sum

( 3, 5, 9, 4, 4, 2) Ggl :ZQ*ZQ

H1:Z2XZ2 C:]. G91/<:Z2*Zg —

connected sum £(2,1)#L£(2,1)

(3,5,9, 4, 4,12) Go = (a,b|a® =b> = (ab)?)

Hy =1 (=Zy Goa/(=A5 ¢92 : a > Gss.a,b— Gs5.b
(3,5,9, 4, 6, 0) Gogg =Z3*Zy

H1:Z3XZ4 C:]. G93/<:Z3*Z4 —

connected sum

(3,7,7,2, 2,2 Goy ={ab|a®>=0>=(a"%b)?

Hy =75 (=2Z10 Goa/(=A4 —
representative; GAP code for the group is [120,15]

(3,7,7,2,6,2 Gos ={ab|ab ta2b"t=1,ab %> =1)
Hy = Zyo (=71 Gos5/C =S4 $o5 : ab™! — Ggz.a, b— Gea.b
(3,7,7, 4, 4, 0) Gog =Zs

lens space L£(5,7)

(3,7, 7, 4, 4,12) Gor = {a,b|ab 3ab=1,a*"* a3’ 1a 171 =1)
H1:Z2XZ CZZ G97/<:A+(474,2) ¢9720A—>G73.CL, b}—>G73.b
(3,7,7, 4, 6,0 Gy =7

H =7 (=7 Gos/C=1 —

the space S! x S?; representative

(5,5,7,0,2, 4 Go =7Z3

Hy =73 (=713 Ggo/C=1 —

lens space £(13,7)

(5,5,7,0,2, 6 Gio=2Zz*2Z3

Hi=Zyx23 (=1 Gio0/C =Za* L3 —

connected sum £(2,1)#L£(3,1)
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101. ( 5, 5, 7, 0, 2, 8) Gio1 = (a,b| a®*h? =1,abab tab~! = 1)

H, =7g C =7y GlOl/C = Dg ¢101 ca b Glg.a, ab~la — Glg.b
102. ( 5, 5,7, 0, 4, 6) GlOQZZQ*Zg,

H1=Z2XZ3 <=1 GlOQ/CZZQ*Zg —

connected sum £(2, 1)#L(3,1)
103. ( 5, 5, 7, 0, 4,10) G103 = Z13

Hy =73 (=713 Groz/(=1 —

lens space £(13,7)
104. ( 5, 5, 7, 2, 0, 2) Gioa= (a,b | ab?a =1,b"2ab"tab~! =1)

H1=Z6XZ2 CZZG G104/<=D4 ¢104:a»—>G11.a, bHGll.b
105. ( 5, 5, 7, 2, 0, 4) Gio5 = Z1g

Hy = 73 (=Z1g Gros/(=1 —

lens space £(18,7)
106. ( 5, 5, 7, 2, 0, 6) Giog = Z12

Hy =712 (=Z12 Gros/(=1 —

lens space £(12,7)
107. (5, 5, 7, 2, 0, 8 Gior=(a,b ] a?h? =1,ab tab ta"tb"tab~! =1)

H| =7Z¢ X Zo CZ Zg G107/< = Dg (;5107 cab 1l Ggo.a, b1 Ggo.b
108. (5, 5, 7, 2, 2, 8 Giis=(a,b]abtab=1,b"ta3b"1 =1)

Hy =74 (=7 Gis/¢=Ds p108 s a”t — Go.a, b Go.b
109. ( 5, 5, 7, 2, 4, 2) Gig9 = (a,b | a®> = (a7b?*)%,b? = (a?b)?)

H =Z4xZs (7 Gi09/C 7 —

representative
110. ( 5, 5, 7, 2, 4, 6) Giio= (a,b|abtab=1,b"ta"3b"2a"2b"1 =1)

H, =7g (=124 GllO/C = Dy (;5110 :ba"tba — Ggs.a, b~ tab — Ggs.b
111. (5, 5, 7, 2, 6, 2) Gi11=(a,b|ab 3a? =1,ab tab~ta 2671 =1)

H, =73 x Zs3 CZZ G111/<:A+(3,373) ¢111 :a>—>G69.a, b_1|—>G69.b
112. ( 5, 5, 7, 2, 6, 6) Gi12=(a,b| a® = (ab)® = (ab?)?)

H1=Z3XZ C=7 G112/<=? —

Eucleidean manifold; representative
113. ( 5, 5, 7, 4, 0, 6) G113 =7y *Zs3

H1=Z2XZ3 <=1 G113/<=Z2*Z3 —

connected sum £(2, 1)#L(3,1)
114. ( 5, 5, 7, 4, 2, 4) Gua=(a,b|abta 07 ta bt =1,ab"2a%b " ta = 1)

Hy =715 C(=Ziyp Guna/¢=A4 G114 : a7 1a108 5 Gyy.a,

b=1g=170h=14=176 , G, b

115. ( 5, 5, 7, 4, 4, 4) Gui5=(a,b| b taba=1,b"ta 2" 2a73b"1 =1)

H, =7g C =7y G115/< = Dy (;5115 : b2a — Gg5.CL, b’3a — G85.b
116. ( 5, 5, 7, 4, 4, 68) G116 = (a,b | a® = b3 = (ab)?)

H =7 (=7 G116/¢ = AT(6,3,2) —

Eucleidean manifold; representative
117( 2, 6,10, 3, 3, 1) G117:Z2*Zg

Hy =7y xZs (=1 Gur/C =Ly * L3 —
connected sum £(2,1)#L£(3,1)
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118( 2, 6,10, 3, 5, 1) G118:Z3*Z3
H1=Z3XZ3 <=1 G118/<=Z3*Z3 —
connected sum £(3, 1)#L(3,1)

119. ¢ 2, 6,10, 3, 5,15) G119 = Zs * Zs
H1=Z2XZ5 <=1 GllQ/CZZQ*Z5 —
connected sum

120. ( 2, 6,10, 5, 3,15) G199 = Z3 * Zs3
H1=Z3XZ3 <=1 Glzo/<=Z3*Z3 —
connected sum £(3,1)#L£(3,1)

121. ¢ 2, 6,10, 5, 5,15) G191 = Zso * Zs3
H, =75 x 73 (=1 G121/<:Z2*Z3 —
connected sum £(2,1)#L£(3,1)

122. ( 2, 8, 8, 3, 3, 1) G122:Z16
Hy =716 (=Zis Gi2/¢(=1 —
lens space £(16,7)

123. ( 2, 8, 8, 3, 5, 1) Glggzzlg
Hy =79 (=79 Giaz/¢=1 —
lens space £(19,7)

124. ( 2, 8, 8, 5, 5, 1) Giog = 7o
Hy =7Zxn (=2Zn Giaa/¢=1 —
lens space £(21,7)

125. ( 4, 4,10, 1, 1, 1) Gizs = (a,b | a® =b* = (ab)2)
Hy =Zo4 ¢(=7Z12 Gi25/¢ = Do —
representative; GAP code for the group is [120,2]

126. ( 4, 4,10, 1, 1, 3) Gz = Z1og
Hy =79 (=7Zi9s Gras/¢=1 —
lens space £(19,7)

127. ( 4, 4,10, 1, 1, 5) Giar = (a,b| ab ta=2b"tab~! = 1,a%baba = 1)

Hy =75 (=710 Grar/(= A4 P127 1 b taT 0 — Gos.a, b 2a71b? — Gog b
128. ( 4, 4,10, 1, 1, 7) Gias = (a,b | bab*a='b = 1,aba*b = 1)
Hy = Zoo ¢(=7Zip Gi28/¢ = Dg P128 : bPab — Gros.a, a” bt — Groab

representative; GAP code for the group is [60,1]
129. ( 4, 4,10, 1, 1, 9) Gio9="7Z1s
Hy =75 (=71 Gr2/¢=1 —
lens space £(16,7)
130. ( 4, 4,10, 1, 1,11) Giz0=(a,b| a® =b"2 = (ab™1)3)
Hy =71 C=1Zyp Gi130/C=45 —
representative; GAP code for the group is [1320,14]
131. ( 4, 4,10, 1, 5, 1) Giz31 = (a,b| a® =b?> = (ab™1)?)
Hy =710 xZy (=77 Gi31/¢= D12 —
rerpesentative; GAP code for the group is [120,21]
132. ( 4, 4,10, 1, 5, 7) Gize = (a,b| b ta b 2ab"! =1,aba=*b = 1)
Hy =712 (=2Zs Gi32/C= Do $132 1 a — Gas.a, ba™ ' — Ga5.b
representative; GAP code for the group is [60,2]
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133. ( 4, 4,10, 1, 5, 9) Gisz=(a,b| b taba=1,b"ta 471 =1)

Hy=79x7Zy (=7Zy Gi33/¢=Ds P133 1 a — Gog.a, br— Gog.b
134. ( 4, 4,10, 3, 1, 9 Gizs=(a,b | ab ta3b~! =1,ab"tabab~1a = 1)

Hy =710 C(=Z1o G13a/C=05, $134 : b~ — Ggz.a, b Gga.b
135. ( 4, 4,10, 3, 3, 3) Gizs = {(a,b | a® = b = (a®b)?)

Hy =7 (=714 Gi35/¢= 45 —

representative; GAP code for the group is [840,13]
136. ( 4, 4,10, 3, 3, 7) Gizs = (a,b| b taba =1,b"1a"3p"1 =1)

H =74 (=2 Gi36/¢ = Dg d136 : a1 — Gg.a, b— Gg.b

137. ( 4, 4,10, 3, 3, 9 Gi3r={(a,b|ab ta tba b =1,a%b"ta %" =1,ab"ta"3b"1ab = 1)
Hl = Z C = Z G137/C = A+(6,372) ¢137 L a = Gug.a, ab‘l = Gllg.b

138. ( 4, 4,10, 3, 7, 7) G138 = Z1o
Hy =712 (=712 Gug/¢=1 —

lens space £(12,7)

139. ( 4, 6, 8, 1, 1, 1) Gizg = (a,b | a* =1* = (ab)~2)
Hy = Zss (=172 G139/C =54 —
representative; GAP code for the group is [624,131]

140. ( 4, 6, 8, 1, 1, 3) Gispo = (a,b ] ab ta®b~! = 1,aba’b?a = 1)

Hy = Zo =7y Grao/C = Dg G140 : b 1a?b™ — Gigs.a, ab2a?b7 ! — Gioa.b
141. ( 4, 6, 8, 1, 1,11) Giy = (a,b | a* = b* = (ab)?)

H1:ZQ CZZ Gl41/<:A+(47373) o

representative
142. (4,6, 8, 1, 5, 3) Guz=(a,b|aba®>=1,ab" a0 a™?b" " = 1)

Hy =75 (=710 Ghaz/(= A4 P142 1 a7 0001012 1 Gog.a, a710*3 — Gou b
143.( 4, 6,8, 1, 7, 1) Guz={(a,b|a®=0=(ab"")?)

Hy =7y (=7Z3s Gz/(=A45 -

representative; this group is isomorphic to the group of order 2280,
which is an extension of Zig9 X As

144. ( 4, 6, 8, 3, 5,13) Giaa = (a,b | ab 2ab=1,b"ta®b"ta"t = 1)

H1:Z2 CZZQ G144/<=S4 ¢144ICL'—>G51.CE, b’—>G51.b
145. ( 4, 6, 8, 3, 9, 3) Gus=(a,b|ab 'a b la=1,a’b*a=1)
Hy = Zyo C(=Zwo Gias/¢=54 b145 1 ab™ — Gga.a, b Gea.b

146. ( 4, 6, 8, 3, 9,13) G = (a,b| a* =b* = (a7 'b)?)
H1228XZ2 CZZ G146/<=A+(4,472) —

representative
147. ( 4, 6, 8, 5, 1, 3) Gur=Zig
Hy = Z19 (=Z19 Gur/(=1 -

lens space £(19,7)
148. ( 4, 6, 8, 5, 3, 1) Gug="Zy*Zs
H, =75 x 73 C:l G148/<=Z2*Z3 —
connected sum £(2,1)#L£(3,1)
149. (4, 6, 8, 5, 5, 3) Guo=(a,b|ab2a>=1,b""a b ta tba~! = 1)
H, =79 < = Zg G149/C = A4 (25149 ca b0 1p758 G49'a7
a=1p=60q=1p=57 G4g.b
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150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

(4, 6,8, 5, 5,11) G50 = {a,b| a® = b* = (ab)?)
Hy =7 (=7 Gis0/¢C = AT(5,4,2) —
representative

(4, 6, 8’ 5’ 7, 1) G151:ZZ*Z4

Hy =795 X 7y (=1 0151/<=Z2*Z4 —
connected sum

(4, 6,8, 5, 7,11) Gis2= (a,b|abtab=1,b"ta b7 1a® = 1)

H1 ZZQ XZQ CZZQ G152/<=D8 (;5152 ICL'—>G20.Cl, bHGQQ.b

(4, 6,8, 5, 7,13) Gisz= (a,b| a®bta®b 20702 =1,a%"3=1,a%b"2=1)
H1=Z CZZ G153/<:1 ¢153 IQHGgg.a,bHGgg.b

note that the group is two-generated, but a = b!

(6,6,6, 1,1, 1) Gisa=(ab|a®=0b=(ab)™?)

H1=Z9XZ3 CZZ 0154/<=A+(3,3,3) —

representative

(6,6,6,1,1, 9 Gis5=_(ab]|ab3a®=1,ab’ab tab tab™! =1)

Hy =75 (=17 Gis5/¢ = AT(4,3,3) ¢u1s5 1 ab™ ' — Garr.a, a— Garr.b
representative

(6,6, 6,1, 3, 3) Gi56 = 7o

Hy =Zx (=7Zan Gis6/¢=1 —

lens space £(21,7)

(6,6,6,1,3, 7 Gis7=/{ab|ab’a=1,abab tab~ta"tb"tab~t =1)

Hy =7y (=2Zs Gis7/¢ = Do $157 : a”Tb— Guis.a, a7 b la” — Gars.b

(6,6,6,1,5, 9 Gss=I(b|a?b?2=1atbatba 10"t =1)

Hl = Z4 C = Zg G158/C = D6 ¢158 . cflb — Gg.a, a+— ng

(6,6,6,1,7, 7 Giso=/(a,b]|a®=0b%a"1%b*=a%b"1a?)

H1:Z4XZ C? G159/C? —

representative

(6,6,6,3,3,5 Gigp=/{(ab|abta"tb"tab=2=1,ab tabab~ta =1)

Hy =75 (=Zio Gieo/¢= A4 P160 : b~ 1a"b1a — Gous.a,
a=%3bab=1a® — Gou.b

(6,6,6,3,3,7 Gi=/{ab|lab~ta 2"t =1,ab"tab?=1)

Hy =73 (=2Zy Gre1/¢(= A4 $161 1 a— Giz.a, b1 — Giz.b

(6,6,6,3,5,5 Gig=/{(ab|ab 2ab=1ab"ta" b ta"tbab =1,
a’b~ta b lab a7 b7 = 1)

Hy =Zr (=214 Gre2/( = A5 Pre2 7

GAP code for the group is [840,13]

(6,6,6,5, 5,5 Giea=(a,b|a’ba™! =b""ab?,b~'a’b"" = ab ?a)
Hi =17 ¢? Gie3/C ? —

representative

(1, 3,15, 2, 2, 0) Giea=7Zo*Zg

H1=Z2XZ8 <=1 G164/<=Z2*Z8 —
connected sum £(2,1)#L(8, 1); representative

(1, 3,15, 6, 2, 0) Gies =Zp * Zg
H1=Z2XZ8 <=1 G165/<=Z2*Z8 —
connected sum L£(2,1)#L(8, 3); representative
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166. ( 1, 5,13, 2, 2, 0) Gies = Z3 * L7
H1:Z3XZ7 <=1 G166/<:ZB*Z7 —
connected sum £(3,1)#L(7,1); representative

167. ( 1, 5,13, 2, 4, 0) Gig7 =Z3* 27
H1:Z3XZ7 <=1 0167/C:23*Z7 —
connected sum L£(3, )#L(7,1)

168. ( 1, 5,13, 4, 2, 0) Gigs = Z3 * 27
H1:Z3XZ7 <=1 Glgg/<223*z7 —
connected sum £(3,1)#L(7,2); representative

169. ( 1, 5,13, 4, 4, 0) Gig9 = Z3 * 27
H1:Z3XZ7 <=1 Glgg/<223*z7 —
connected sum £(3, 1)#L(7,2)

170( 1, 5,13, 6, 2, 0) G170:Z3*Z7
H =7Z3xZ; (=1 Gir0/C = Z3 * L —
connected sum £(3, 1)#L(7,3)

171. ( 1, 5,13, 6, 4, 0) G711 =Z3*Zn
H =7Z3xZ; (=1 Gin1/C =73 * 7 —
connected sum £(3, 1)#L(7,3)

172. (1, 7,11, 2, 2, 0) Gire = Z4* Zg
H =74xZ¢ (=1 Gir2/C = Ty * ZLg —
connected sum £(4, 1)#L(6, 1); representative

173( 1, 7,11, 2, 6, 0) G173:Z4*ZG
H =74xZ¢ (=1 G173/C = Ty * ZLg —
connected sum £(4, 1)#L(6,1)

174( 1, 9, 9, 2, 2, 0) G174:Z5*Z5
Hy=7ZsxZs (=1 Gi7a/C = Zs * Zs —
connected sum L£(5, 1)#L(5, 1); representative

175( 1, 9, 9, 2, 4, 0) G175:Z5*Z5
H1=Z5XZ5 Czl G175/<=Z5*Z5 —
connected sum L£(5, 1)#L(5,2); representative

176( 1, 9, 9, 2, 6, O) G176:Z5*Z5
H1=Z5XZ5 Czl G176/<=Z5*Z5 —
connected sum L£(5, 1)#L(5, 3); representative

177. C 1, 9, 9, 2, 8, 0) Gi77 =75 * Zs
H1=Z5XZ5 Czl G177/<=Z5*Z5 —
connected sum L£(5, 1)#L(5,2)

178( 1, 9, 9, 4, 4, O) G178:Z5*Z5
H1=Z5XZ5 Czl G178/<=Z5*Z5 —
connected sum L£(5,2)#L(5,2); representative

179. (1, 9, 9, 4, 6, 0) Gi79 = Z5 * Zs
H =75sxZs (=1 Gir9/C = Zs * Zs —
connected sum L£(5,2)#L(5, 3); representative

180( 3, 3,13, 0, 2, 4) G180:Z3*Z4
H =7Z3x7Zs (=1 Gi80/C = 73 * 7y —
connected sum
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18].( 3, 3,13, 0, 2,12) G181:Z3*Z4
H1=Z3XZ4 <=1 Glgl/<=Z3*Z4 —
connected sum

182. ( 8, 3,13, 2, 0, 2) Gis2= (a,b| ab?a®? =1,ab3ab™! =1)

Hy = Zss (=2Zs Gis2/( = Dpg Prsa :a b0 Gag.a, b Gag.b
183. ( 3, 3,13, 2, 0,10) Gis3 = Zis
Hy =76 (=26 G183/<:1 o

lens space £(16,7)
184. ( 3, 3,13, 2, 2, 8) Gisa= (a,b| b ta b 2ab™! = 1,aba"* = 1)

Hy =712 (=2Z¢ Gisa/C = Do $184 1 a— Gais.a, ba™t — Guis.b
185. ( 3, 3,13, 2, 2,12) Gig5 = {(a,b | a” = b* = (ab)?)
Hy =74 (=2Zy Ghisgs/¢ =D —

representative; GAP code for the group is [28,1]
186. ( 3, 3,13, 4, 2, 4) Gigs = (a,b | a®b~ta"2ba?b~ta?ba=2b"ta’b = 1,0 = 1)
H1=Z2XZ <=1 G186/<:Z2*Z ¢186:ab—>G2.a, bHGQb
187( 3, 5,11, 2, 4, 0) G187:Z2*Z7
H1:Z2XZ7 <=1 G187/<:Z2*Z7 —
connected sum
188. ( 3, 5,11, 2, 4, 2) Giggs = (a,b | ab 'a™3b~! =1,ab %ab™! = 1)
Hi =7 (=214 Giss/( =54 P1ss : a — Gro.a, ab 'a'® — Gro.b
189( 3, 5,11, 4, 4, O) G189:Z2*Z7
H1:Z2XZ7 <=1 Gng/CZZQ*Z7 —
connected sum
190. ¢ 3, 5,11, 4, 4, 2) Gigo = (a,b | abta"2b"a? = 1,ab 2a%ba = 1)

Hy =7+ (=714 Groo/¢ =45 ¢190 : @ Gi3s.0, b= Gi35.b
191. ( 3, 5,11, 4, 4,14) Gio91 = (a,b | ab=2ab, a3 =1,a’b"ta 10"t = 1)
H1 =7 CZZ G191/<=A+(6,3,2) ¢191 : CL'—>G116.CL, bHGllﬁ.b

192. ( 3, 5,11, 6, 4, 0) Gigo = Zo x Zn
Hy =75 x7Zr C:l G192/<:Z2*Z7 —
connected sum

193. (3, 7, 9, 2, 0, 2) Gioz = (a,b|ab ta®b~! =1,ab*a = 1)

Hy =710 %x2Zy (=2Zyo Gig3/(=Ds $193 1 b— Ger.a, ab~! — Gg1.b
194. ( 3, 7, 9, 2, 4, 2) Gios= (a,b] a® =b? = (a®h)?)
Hy = 7o (=Ziyp Gi9a/¢ = Dg —

195. (3, 7, 9, 4, 0, 2) Gios=7ZoxZs
H1=Z2XZ2 <=1 G195/<=Z2*Z2 —
connected sum £(2, 1)#L£(2,1)

196. ( 3, 7, 9, 4, 2, O) G196:Z3*Z5
H1=Z3XZ5 <=1 G196/<=Z3*Z5 —
connected sum

197. ( 3, 7, 9, 4, 4, O) G197:Z3*Z5
H1=Z3XZ5 <=1 G197/<=Z3*Z5 —
connected sum



128 3-manifolds of Heegaard genus at most two
198. ( 3, 7, 9, 4, 4, 2) Gi9s =7Zso
Hi =17 (=Zy Grg/C(=1 —
lens space £(2,1)
199. ( 3, 7, 9, 4, 4,14) Gigo = (a,b | ab 3ab=1,ab ta b7 1a® = 1)
H1 = ZQ C =7 Glgg/c = A+(5, 47 2) ¢199 .a— G150.6L, b [ Gl5o.b
200. ( 3, 7, 9, 4, 6, 0) Gag = Zs *Zs
H1=Z3XZ5 <=1 GQOQ/<:Z3*Z5 —
connected sum
201. ( 3, 7, 9, 4, 6, 2) Gog1 = Zo x 73
H1=Z2XZ3 <=1 GQOl/CZZQ*Zg —
connected sum £(2, 1)#L(3,1)
202. ( 3, 7, 9, 4, 8, O) GQQQZZg*Z5
H1=Z3XZ5 <=1 G202/<:Z3*Z5 —
connected sum
203. ( 3, 7, 9, 4, 8,14) Gao3 = (a,b | ab~tab? = 1,a*b3a® = 1)
Hy=7Zn (=7Zyp Ga3/(=A45 $203 1 a — Giso.a, ab™' — Gi30.b
204. ( 5, 5, 9, 0, 4, 4) Gy = Zg
Hy =Z¢ (=Z¢ Gou/¢=1 ®204 :
lens space £(6,7)
205. ( 5, 5, 9, 0, 4, 6) Goos =Z11
Hy =711 (=Zn Gas/¢=1 —
lens space £(11,7)
206. ( 5, 5, 9, 0, 4,12) Gaogs = Z1s
Hy =Zss (=7Zis Gas/¢= —
lens space £(16,7)
207. ( 5, 5, 9, 2, 0, 2) Goor = (a,b | ab®a =1,ab"tab~1a®b~! =1)
Hy =7Zxn (=71 Ga7/¢= A4 B207 1 b3 = Gesg.a, b~*ab'® — Ges.b
208. ( 5, 5, 9, 2, 0,10) Gaos = (a,b| a®b® = 1,ab"tab tabab—' = 1)
Hl = Z14 g = Zl4 Ggog/C = 54 ¢208 : b*56ab*53a — G70.a7 b’56ab’54a — G70.b
209. ( 5, 5, 9, 2, 2, 2) Gagg = (a,b | a = b%a?b% b = aba’)
Hy =Zo4 ¢? G209/C ? —
representative
210. ( 5, 5, 9, 2, 2,10) Gaip=(a,b|ab tab=1,b"1a 471 =1)
Hy =79 X%y (=7 G210/¢=Dsg @210 : a = Gao.a, b= Gag.b
211. ( 5, 5, 9, 2, 6, 2) Gay1 = (a,b|abta2b"t =1,ab 2a% = 1)
Hy =17Zg ¢(=2Zy Gon/¢=Dg @211 1 a— Grg.a, b— Gig.b
212. ( 5, 5, 9, 4, 0, 4) G =179
Hy =7Zn (=2Zn Goz/¢=1 —
lens space £(21,7)
213. ( 5, 5, 9, 4, 0, 8) Goiz=12Zr
Hy =17 (=Z7 Gasz/¢=1 —
lens space £(7,7)
214. ( 5, 5, 9, 4, 4, 4) Gy = (a,b | b%a®> =1,ab a0 =1)

Hy =7y xZy (=1Zy Go214/C= Dy $214 1 a— Ga.a, b1 — Gab
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215.

216.

217.

218.

219.

220.

221.

222.

223.

224.

225.

226.

227.

228.

229.

230.

231.

232.

(5,5,9, 4,
Hi =1
representative
(5, 5,9, 4,
H1=Z4XZ4
(5,7,7,0,
Hy =76
(5,7,7,0,
H, =Zg
(5,7,7,0,
Hy =745
(5,7,7, 2,
Hy = 7o,
(5,7,7, 2,
Hi =75
(5,7,7, 2,
H1:Z2XZ6
connected sum
(5,7,7, 2,
Hi =74
(5,7,7, 2,
H1:Z6XZ2
(5,7,7, 2,
Hi =79
(5,7,7, 4,
Hy =75
(5,7,7, 4,

4, 8) Gaoi5={a,b|abta"tba b7 ta =1,a%ba"1b"1a"1ha = 1)
(=17 Ga15/¢ = AT(7,3,2) 215 : a— Gazg.a, a®b— Gs39.b

8, 4) Gaig= (a,b| ab ta?ba=1,b"1a"3b2a b1 =1)

¢? Ga16/¢ 7 $216 : a~ — Grog.a, b— Grog.b

2, 2) Gair = (a,b| ab?*a® =1,b"2ab tab™! = 1)

(=2Zs Go17/¢ = Dg ¢o17 : a — Gaog.a, ba™? = Gag.b
2,10) Gais = {(a,b | a®b® = 1,a b tab tab~! = 1)

(=%Z¢ Goig/C = Ay ¢o18 : a 10728 = Gyg.a, b1 — Gug.b
4,12) Goig = {a,b| ab=3ab™!' =1,ba=%b = 1)

(=17Zg G219/¢ = D1 $219 : a — Gea.a, b Geyg.b

2, 4) Gax = (a,b|a b7 ta b 1a"2b = 1,b%a 1b%aba = 1,ab"2ab~ta?b~1 = 1)
¢? Ga220/C 7 $220 : a® — Gagg.a, a — Gapg.b
2,10) Gao1 = (a,b | ab~ta 2071 = 1,ab"1ab? = 1)

(=7Zy Ga/(=A4 $221 1 a— Gig.a, b1 — Gis.b

6, 0) Gaogo =7o xZg
¢=1 Ga22/C = Zo x Zs —

6, 4) Gag={a,b|ab 2a=1,a"1ba b~ ta 0! =1)

C = Z4 G223/C = D6 (]5223 : cflba’lbcﬁ — Glg.a, a+— Glg.b
8, 0) Gaog = {(a,b|ba"1ba® =1,ab"tab=3 =1)
(=Z¢ Ga4/¢ = Dg ¢224 1 a— G3p.a, b— G3o.b

8, 2) Gaos = {(a,b| ab lab~ta 207! =1,ab %a® = 1)

g =7 G225/C = A+(4, 37 3) ¢225 b— G141.CL, ab’l (o G141.b

4, 2) Gap=(a,b| b 2a 3"t =1,ab"2a 0 2a=1)

(=710 Ga/¢= A4 P26 : b2 — Gog.a, b*Pab™ — Goy.b
6, 4) Gaogr = (a,b| ab 2ab=1,ab " ta"tb~ta"tbab =1,

ab=ta"tb"tab la"1b7la = 1)

H, =7~

< = Z14 G227/C = AS (Z5227 27

GAP code for the group is [840,13]

(5,7,7, 4,
H, =73
representative
(5,7,7, 6,
H, =75

6,12) Gaoos = (a,b | a* =b* = (ab™?)73)
(=7 Goog/C = AT(4,3,3) —

6, 2) Gax =17Zs
(=1Zs Gao/¢=1 —

lens space £(5,7)

(5,7,7, 6,
H =1

(2, 2,16, 3,
H1:Z3XZ
(2, 2,16, 3,
H1:Z3XZ

6, 4) Gazo = {(a,b|a b tabab~! = 1,b"ta b4~ 1b"1a = 1)
(=17 Ga30/C = AT(7,3,2) ¢haszo : b— Gazg.a, ab— G3z9.b
1, 3) Gaog1 = (a,b|a®b"ta3ba"3b"ta’b=1,a=1)

(=1 Gas1/C =73+ 7 @231 : a+— Gia.a, b— Gi4.b
1, 9) Gaza=(a,b|a®b"ta 3ba=3b"1ab = 1,a% = 1)

(=1 Gasa/C =73+ 7 Po32 : a+— Gra.a, b— Gig.b
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233. ( 2, 4,14, 3, 3, 1) G233:Z2*Z4
H1=Z2XZ4 <=1 G233/<:Z2*Z4 —
connected sum

234. ( 2, 4,14, 5, 3,17) Gozs = 7o x Ly
H1=Z2XZ4 <=1 0234/<:Z2*Z4 —
connected sum

235( 2, 6,12, 3, 3, 1) G235:Z2*Z4
H1=Z2XZ4 CZ 0235/<:Z2*Z4 —
connected sum

236. ( 2, 6,12, 3, 5,17) Gaozg = Zo *x ZLg
H1=Z2XZ6 <=1 GQgﬁ/CZZQ*Zﬁ —
connected sum

237( 2, 6,12, 5, 3, 1) G237:Z2*Z5
Hy=ZoxZs (=1 Ga37/C = Zo * s —
connected sum

238. ( 2, 6,12, 5, 5,17) Gozg = Zo x L3
Hy=ZoxZ3 (=1 G23s/C = 7o * 73 —
connected sum £(2,1)#L£(3,1)

239. ( 2, 6,12, 7, 3, 1) Gazg = Zo * Lo
Hy=ZoxZy (=1 G239/C = T * Ty —
connected sum £(2, 1)#L£(2,1)

240( 2, 8,10, 3, 3, 1) G24Q:Z3*Z3
Hy=Z3sxZ3 (=1 G2a0/C = Z3 * Z3 —
connected sum £(3,1)#L(3,1)

241. ( 2, 8,10, 3, 5, 1) Gay = Zo * L3
Hy=ZoxZ3 (=1 G241/C = 7o * 73 —
connected sum £(2,1)#L£(3,1)

242. ( 2, 8,10, 3, 7, 1) Gop=7Z3* 7y
H1=Z3XZ4 <=1 G242/<=Z3*Z4 —
connected sum

243( 2, 8,10, 5, 3,17) G243:Z3*Z4
H1=Z3XZ4 <=1 G243/<:Z3*Z4 —
connected sum

244( 2, 8,10, 5, 5,17) G244:Z2*Z3
H1=Z2XZ3 <=1 G244/<=Z2*Z3 —
connected sum £(2, 1)#L(3,1)

245. ( 2, 8,10, 5, 7,17) Goys = Z3 x L3
H1=Z3XZ3 <=1 G245/<:Z3*Z3 —
connected sum £(3,1)#L(3,1)

246. ( 4, 4,12, 1, 1, 1) Gay = {(a,b | a® = b? = (ab)72)
Hy =714 xZo (=1Z1s Gos/C= D12 —
representative; GAP code for the group is [168,29]

247. ( 4, 4,12, 1, 1, 5) Gayr = (a,b|ab ta®b™t =1,b7ta2b"2ab ta"t = 1)
Hy=710%xZy ¢=7Zio Gar/C= Dy P2a7 1 a7 %b — Garg.a, a b — Gars.b
representative; GAP code for the group is [40,11]
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248. ( 4, 4,12, 1, 1, 9) Gus=(a,b|ab tatb"tab~! = 1,a%ba?ba = 1)

Hy = Zs0 (=710 Gas/¢= Dg P28 s "o = Grog.a, bPa— Gioa.b
249. ( 4, 4,12, 1, 1,13) Gago = {(a,b | ab~tabab~! =1,b"1a" b1 = 1)
Hy =715 C =7 G249/< = A+(6,3,2) ¢249 s a— G350.0, ab™! — G350.0
representative
250. ( 4, 4,12, 1, 5, 1) Gaso = {a,b | a” = b* = (ab™1)?)
Hy = Zo4 (=212 Ga50/¢ =D —

representative; GAP code for the group is [168,4]
251. ( 4, 4,12, 1, 5, 8) Gos1 = (a,b | b ta?ba® = 1,a®b " ta 20"t = 1)

Hy =7¢ (=2Zs Ga51/¢ = Dy @251 : a > Ggs.a, br— Ggs.b
252. ( 4, 4,12, 3, 1, 5) Gaogo = Zo
Hy =7Zs (=2Zy Gosa/C=1 —

lens space £(2,1)
253. ( 4, 4,12, 3, 1,11) Gosz3 = (a,b| ab ta=*b~' = 1,ab " 'abab~'a = 1)

Hy =71 (=172 Ga53/¢= A5 $a53 : a — Giso.a, ba' — Gi30.b
254. ( 4, 4,12, 3, 3, 3) Gass = (a,b|ab ta2b"t =1,ab 2a% = 1)

Hy =73 (=24 Ga54/C= Ds ¢254 1 a— Grg.a, b Gig.b
255. ( 4, 4,12, 3, 3,11) Goss = (a,b | b= taba=tba = 1,bab~ta=*b"1a = 1)

H =1 (=17 Gass /¢ = AT(7,3,2) ¢ass : a+— Gazg.a, b~ la— G3zg.b
256. ( 4, 4,12, 3, 7, 3) Gase = {(a,b | ab?a=1,ab"tab™3 = 1)

Hy=Z¢xZs (=7Zs Gass/C =Dy Pos6 : a— Gri.a, b— Gq1.b
257. ( 4, 6,10, 1, 1, 1) Gasr = {a,b | a® = b3 = (ab)~?)

Hy =73 (=17Z¢2 Gasr/C= A5 —

representative; group of order 3720

258. ( 4, 6,10, 1, 1,13) Gass = (a,b | a® = b3 = (ab)?)
Hy =7y (=Z  Gaus/C=A%(533) —
representative

259. ( 4, 6,10, 1, 7, 1) Gaso = {(a,b | a® =b* = (ab™1)?)

Hy = 7oy (=2 Gase/C = AT(6,5,2) —
representative
260. ( 4, 6,10, 3, 3, 3) Gago = (a,b | aba=tba = 1,ab"2a® = 1)
Hy, = Zs (=74 Ga60/¢ = Ds $260 : @ — Grg.a, b Gig.b
261. ( 4, 6,10, 3, 5, 3) Gag1 = {(a,b | a® = b* = (a?b)?)
H, =7 C =7 Gggl/c = A+(5, 47 2) ¢261 a— Gglo.a, b— G310.b3G310.6L_4
representative
262. ( 4, 6,10, 3, 5,15) Gagz = {(a,b | ab=2ab,b~ta*bta™1)
H1=1 CZZQ G262/<:A5 ¢262 :a»—>G55.a,b>—>G55.b
263. ( 4, 6,10, 3, 9,15) Gagz = {(a,b | a® = b* = (a71b)?)
Hy =713 (=17 Gags/C = AT (5,4,2) —
representative
264. ( 4, 6,10, 5, 1, 1) Gogs = (a,b | at =0 = (ab_2)2>
Hy = Zoy (=17 Gopa/( =54 —

representative; GAP code for the group is [628,87]
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265. ( 4, 6,10, 5, 3,15) Gags = (a,b | ab=2ab=1,ab"ta b7 1a® = 1)
Hi =17 (=2Zy Gass/C =54 ¢265 : a — Gs1.a, br— Gs1.b
266. ( 4, 6,10, 5, 5, 1) Gags = {(a,b | aba=tba = 1,ab"3a® = 1)
H, =Zg (=1Zg Gass/C = Ay bass : a3 — Gag.a, a**ba=13 — Guo.b
267. ( 4, 6,10, 5, 5,13) Gagr = {(a,b | a® = b* = (ab)?)
H1:Z2XZ2 C:Z G267/C:A+(6,472) —
representative
268. ( 4, 6,10, 5, 7,13) Gas = (a,b | ab~tab=1,b"ta b7 1a* = 1)
Hi =174 (=72Zy Gas/¢ = Do ¢268 1 a > Gyr.a, b Gyr.b
269. ( 4, 6,10, 5, 9, 3) Gago = {(a,b | a® = b* = (a?b)3)
H1:Z6XZ3 C:Z GQ@Q/C:A+(3,373) —
representative
270. ( 4, 6,10, 7, 1, 1) Garo = {(a,b | a® =b* = (a®b) %)
Hy = Zoy (=718 Gar/( = A4 —
representative; GAP code for the group is [216,3]
271. ( 4, 6,10, 7, 3,15) Gaor = (a,b| a® =b® = (a?b™1)?)
Hy =73 (=7 Gaon/(=A4s —
representative; GAP code for the group is [1560,13]
272. ( 4, 6,10, 7, 5, 3) Gara = {(a,b|ab2ab=1,ab " a " b"ta = 1)
Hy =73 C(=7Zy Gar/(=A4 ¢2r2 t a— Giz.a, b— Gi3.b
273.( 4, 8, 8, 1, 1, 1) Gaorz = (a,b| a* =b* = (ab)~?)
H1:Z16XZ2 CZZ G273/<=A+(4,472) —
representative
274. ( 4, 8, 8, 1, 1,13) Gary = {(a,b | a* = b* = (ab)?)
H, =7 (=7 Gora/C = AT(4,4,3) —
representative
275. ( 4, 8, 8, 1, 7, 3) Gars=(a,b|ab 3a? =1,ab"ra %0 ta"2p"1 =1)
H, =7¢ x Z3 C =7 G275/< = A+(3,3,3) ¢275 : a’l — Gggg.a, b—1+— G269.b
276. ( 4, 8, 8, 1, 9, 1) Gars = {(a,b | a® =b* = (ab™1)?)
Hy = 7oy (=7 Garg/C = AT(5,4,2) —
representative
277.( 4, 8, 8, 1, 9,13) Gorr = {(a,b| ab 2ab=1,a % 3a"! = 1)
Hy=7Zn (=7Zyp Gar/(=A45 ¢277 1 a > Gi3g.a, ba— G130.b
278. ( 4, 8, 8, 3, 3, 1) Gars = (a,b | a®? =b? = (a3b3)?)
Hy =710 xZy (=7 Gars/C =Dy —
279. ( 4, 8, 8, 3, 5, 1) Gorg =170 x7y
H1=Z2XZ4 <=1 G279/<=Z2*Z4 —
connected sum
280. ( 4, 8, 8, 3, 7,15) G280:Z2*Z5
H1=Z2XZ5 <=1 GQgO/CZZQ*Z5 —
connected sum
281. ( 4, 8, 8, 5, 5, 1) G281:Z2*Z2

Hy=7ZyxZy (=1 Gas1/C =Ly * Lo —
connected sum £(2,1)#L£(2,1)
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282. ( 4, 8, 8, 5, 5,13) Gagz = {(a,b | a® =b® = (ab)?)

H, =175 (=7 Gaga/C = AT(5,5,2) — representative
283. ( 4, 8, 8, 5, 7, 1) G283:Z2*Z5

H1=Z2XZ5 <=1 G283/<:Z2*Z5 —

connected sum
284. ( 4, 8, 8, 5, 7, 3) Gaogs=(a,b|ab 3a? =1,a b ta b ta 0% = 1)

H, = Zg X Zg CZ 7 G284/< = A+(3,3,3) ¢Qg4 : CL_l — Gﬁg.a, b_l — G69.b
285. ( 6, 6, 8, 1, 1, 1) Gags = (a,b | a* =b* = (ab)~3)

H, =733 (=7 Goags/C = AT(4,3,3) —

representative
286. ( 6, 6, 8, 1, 1, 3) Gags = (a,b | aba®b?*a = 1,a3b"tab tab™t = 1)

Hy =Zo7 (=718 Gags/( = A4 Pase 1 b7 1a3TT — Gazg.a, b71a®%® — Gazg.b
287. ( 6, 6, 8, 1, 1, 5) Gagr = Zos

288.

289.

290.

291.

292.

293.

294.

295.

296.

297.

H, = Zo;5 C = Zas G287/< =1 T

lens space £(25,7)

(6, 6, 8, 1, 1, 7) G288:Z24

Hy =704 (=12Zos Gogg/C=1 —

lens space £(24,7)

(6, 6,8, 1,1, 9 Ga=(a,b]|a??a®b=1,ab " a 0" ab~tab=t = 1)
Hy = Zy (=172 Gagg/C =54 $agg : 7

group is isomorphic to [528,87]

(6,6,8,1, 1,11) Gao = (a,b| a* =b* = (a7'b)?)
Hy =75 (=7 Gago/C = AT(4,4,3) —
representative

( 6, 6, 8, 1, 3, 7) G291:Z2*Z3

Hy=ZoxZ3 (=1 G201/C = 7o * 73 —

connected sum £(2,1)#L£(3,1)

(6,6,8,1, 3,9 Gao=1{(ab|ab ta 2b"tab~t =1,ab ta bt =1,
ab=ta"2b"2a"2%b"tab labab~! = 1)

Hy =7 (=17 Gao2/C =1 $292 : a — Gog.a,b — Gog.b

note that the group is two-generated, but a = b!

(6, 6,8, 1,5, 5) Gagg=17Z3

Hy =73 ¢= G203/C = 713 —

lens space £(13,7)

(6, 6,8, 1,511) Gas=(a,b|ba b7 lab=1,a*b"ta" 0! =1)

Hy =73 C(=7Zy Gau/(= A4 $204 1 @ Giz.a, b Gi3.b

(6,6,8,1,7,7) Goss=17Zyx*ZLs

Hy=7ZoxZ3 (=1 Gos5/C = 7o * 73 —

connected sum £(2, 1)#L£(3,1)

(6,6,8, 1,9, 1) Gags={ab|a®=0b>=(ab"1)3)

H, =7 (=7 Gags/C = AT(5,3,3) —

representative

( 6! 63 8) 1, 9, 7) G297 = <a7b | ab_lab_lab_1a_1b_1a_1b_1a_1b_1 = ]_’

ab~tab~ta=% ! =1,a?b"ta o ta" 7 = 1)
H1 = Zg X 7 C =7 G297/< =? ¢297 Lat— G112.6L, b— G112.b
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208. ( 6, 6, 8, 1, 9, 9) Gaogs = Z13
Hy =713 (=713 Gagg/¢=1 —
lens space £(13,7)
299. ( 6, 6, 8, 3, 1, 9) Gagg = (a,b | a®b? = 1,abab tab~tabab=! = 1)
Hy =713 (=172 Gago/C = A5 $209 : 7
group is isomorphic to [1560,13]
300. ( 6, 6, 8, 3, 3, 9) Gzp = {(a,b|ab tab® =1,a b tab ta 2 =1)
Hy =7, (=72 G300/C =54 $300 : a— Gs1.a, b1 — Gs1.b
301. ( 6, 6, 8, 3, 5, 7) Gso1={a,b|b taba=1,b"ta 30"t =1)
H, =74 CZZQ G301/<=D6 ¢301 :a‘1|—>G9.a, bHng
302. ( 6, 6, 8, 3, 7, 3) Gso2={a,b|b%a®>=1,ab"'a b7t =1)
Hy =75 X Zso CZ Zo G302/< =Dy ¢302 ra— G4.6L, b1 Gy.b
303. (6, 6, 8, 3, 7, 7) Gzop3="{a,b|aba"%ba=1,ab"'a tbababa=1b=! = 1)
H1 = ZQ C =7 Ggog/c = A+(5, 47 2) ¢303 s ab— G150.a, a — G150.b
304. ( 6, 6, 8, 3,11, 3) G30a = {(a,b|ab ta b ta=1,a%’a=1)
Hy =7Zn (=172 G304/C= A5 $304 7
the group is isomorphic to [1320,14] [16]
305. ( 6, 6, 8, 3,11, 5) G305 = Z13
Hy =713 (=7Z1g Gs5/¢=1 —
lens space £(18,7)
306. ( 6, 6, 8, 3,11, 7) Gaos = Z12
Hy =712 (=Z12 Gs06/(=1 —
lens space £(12,7)
307. ( 6, 6, 8, 3,11, 9) G397 = Zs
Hy =7Zs (=17Zs Gsor/¢=1 —
lens space L£(5,7)
308. ( 6, 6, 8, 5, 1, 7) Gsos = {(a,b| aba'b=1,ba’bab~‘abab=la = 1)
Hy =712 (=1%Zs G308/¢C = Dio $30s 1 a b — Gai5.b, a” b+ Gui5.b
309. ( 6, 6, 8, 5, 3, 5) G3p9 = {a,b|b%a®?=1,ab"ta"0") =1
H, =75 X Zso CZ Zo G309/< =Dy (;5309 a— G4.6L, b1 — Gy.b
310. ( 6, 6, 8, 5, 3, 7) Gzi0={(a,b| a® =b,a* = (ab)?)
H1 = Z6 C =7 G310/< = A+(542) ¢310 L a = Gzﬁl.a, b = G261.b2
311. ( 6, 6, 8, 5, 5, 7) Gz11 = {a,b| a® =b"tab?ab~t,ab~tab = b"ta"tba"!)
H1 =7 C ? G311/< ? —
representative
312. ( 6, 6, 8, 5,11, 7) G312 = {a,b | ab=2a% = b%a=2b,ba"2b = a~'b%a~1)
H1=Z5XZ <7 G312/<? —
representative
313( 1, 1,19, 2, 0, 2) G313:Z5*Z
H1=Z5XZ CZl G313/<=Z5*Z —
connected sum; representative
314. ( 1, 1,19, 2, 0, 6) G314 = {a,b| a®b b =1,a° = 1)

H =7ZsxZ (=1 G314/( = Zs x @314 1 a = G313.0, b+— G313.b
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315

316.

317.

318.

319.

320.

321.

322.

323.

324.

325.

326.

327.

328.

329.

( 1, 3,17, 2, 2, 0) G315:Z2*Zg
H1=Z2XZ9 <=1 0315/<=Z2*Z9
connected sum £(2,1)#L(9, 1); representative
( 1, 3,17, 4, 2, O) G316:Z2*Z9
H1=Z2XZ9 <=1 G316/<=Z2*Z9
connected sum £(2,1)#L(9, 2); representative
(1, 3,17, 8, 2, 0) G317 =7y * Zyg
H1=Z2XZ9 <=1 G317/<=Z2*Z9
connected sum £(2,1)#£(9,4); representative
(1, 5,15, 2, 2, 0) G318 = Z3 * Zg
H1=Z3XZ8 <=1 G318/<=Z3*Z8
connected sum £(3,1)#L(8, 1); representative
(1, 5,15, 2, 4, 0) G319 =73 *Zg

H =7Z3xZsg (=1 G319/C = Z3 * Zg
connected sum £(3,1)#L(8,1)

(1, 5,15, 6, 2, 0) G390 = Z3 * Zg

H =7Z3xZs (=1 G320/C = Z3 * Zsg
connected sum £(3,1)#L(8, 3); representative
(1, 5,15, 6, 4, 0) G321 =Z3*Zg

H =7Z3xZs (=1 G321/C = 73 * Zg
connected sum £(3,1)#L(8,3)

(1, 7,13, 2, 2, 0) Gzo=Zs*xZy

H =74xZ7 (=1 G322/C = 74 * L7
connected sum L£(4, 1)#L(7,1); representative
(1, 7,13, 2, 6, 0) Gzx3=7Zs*Zy

H =74xZ7 (=1 G323/C = 74 * L7
connected sum £(4, 1)#L(7,1)

(1, 7,13, 4, 2, 0) Gzou=Zs*Zy
H1:Z4XZ7 <=1 G324/<:Z4*Z7
connected sum L£(4, 1)#L(7,2)

( 1, 7,13, 4, 6, 0) G325:Z4*Z7
H1:Z4XZ7 <=1 G325/<:Z4*Z7
connected sum L£(4, 1)#L(7,2)

( 1, 7,13, 6, 2, 0) G326:Z4*Z7
H1:Z4XZ7 <=1 G326/<:Z4*Z7
connected sum L£(4, 1)#L(7, 3); representative
( 1, 7,13, 6, 6, 0) G327:Z4*Z7
H1:Z4XZ7 <=1 G327/<:Z4*Z7
connected sum £(4, 1)#L(7,3)

( 1, 9,11, 2, 2, 0) G328:Z5*Z6

H =75xZ¢ (=1 G'328/C = Zs * Zg
connected sum L£(5,1)#L(6, 1); representative
( 1, 9,11, 2, 4, 0) G329:Z5*Z6

H =75xZ¢ (=1 G'329/C = Zs * Zg
connected sum L£(5,2)#L(6, 1); representative
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330. ( 1, 9,11, 2, 6, 0) Gas30 = Zs * Zg
Hy =75x%Z¢ (=1 G330/¢ = Zs * Zg —
connected sum L£(5,3)#L(6, 1); representative
331( 1, 9,11, 2, 8, O) G331:Z5*Z6
H1=Z5XZ6 <=1 0331/<=Z5*Z6 —
connected sum L£(5, 1)#L(6,1)
332. ( 3, 3,15, 2, 0, 4) G332 = {a,b| ab ta®baba®b=! =1,a3b"ta®b =1,a® = 1)
H1=Z3XZ <=1 G332/<=Z3*Z ¢33236L'—>G14.a, b’—>G14.b
333. ( 3, 3,15, 2, 2, 2) G333 = {a,b|ab 3ab™t =1,ba"b = 1)

Hy =716 (=72Zs G333/¢ = Do ¢333 1 a > Gegg.a, b Geg.b
334. ( 3, 3,15, 2, 2, 6) Gz = (a,b]|a” = (a*h)?,b? = (a®b)?)
Hy =17Zg (=2Zs Gs34/C =D —

representative; GAP code for the group is [56,1]

335. ( 3, 3,15, 2, 2,14) G335 = {(a,b | a® = b* = (ab)?)
H\=7yxZy (=2Zy Gs35/¢=Dss —
representative; GAP code for the group is [32,20]

336. ( 3, 5,13, 2, 0, 2) G336 = {(a,b | ab®a® = 1,ab *ab~! = 1)
Hy =7 (=71 Gs36/C=As $336 1 a ' — Ggs.a, b— Ggs.b

337. ( 3, 5,13, 2, 4, 0) G337 = ZQ *Zg
H1=Z2XZ8 <=1 0337/<2Z2*Z8 —
connected sum

338. ( 3, 5,13, 4, 2, 0) G338 = Z4 *Z4
H1=Z4XZ4 <=1 0338/<=Z4*Z4 —
connected sum

339. ( 3, 5,13, 4, 4,16) G339 = {a,b| a” = b3 = (ab)?)
Hi=1 (=7 G339/C = AT(7,3,2) —

340. ( 3, 5,13, 4, 6, 0) G340 = Zy x 7y
H1=Z4XZ4 <=1 G340/<=Z4*Z4 —

connected sum
341. ( 3, 5,13, 6, 4, 0) G341 =79 xZg
Hy=ZoxZg (=1 G341/C = 7o * Zg —
connected sum
342. ( 3, 5,13, 8, 4, 2) G342 = {(a,b|ab ta 3b"la=1,ab"3a* = 1)

Hy =73 (=122 Gza2/¢= A5 @342 1 a = Gari.a, b— Gari.b
343. ( 3, 7,11, 2, 2, 2) Gay3 = {a,b| ab—3a® = 1,ab%a"1b%a? = 1)
Hy = Za (="1Zo2 G3a3/C =15, P343 : @ — Gaga.a, ba=58 — Gaga.b

344. ( 3, 7,11, 2, 6, 2) Gzgs = {a,b| ab ta™3b"! =1,ab"%ab™t =1)
H1 ZZg XZQ CZZ Gg44/<=A+(4,4,2) ¢344 ICL'—>G146.CL, bl—>G146.b
345. ( 3, 7,11, 4, 2, 2) Gag5 = {(a,b | a® = b® = (a?b?)?)
Hy =Ty (=1Z3 Gz5/C =45 —
representative; fundamental group is isomorphic to the group of size 2040,
which is an extension of Zq17 x As
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346

347.

348.

349.

350.

351.

352.

353.

354.

355.

356.

357.

358.

359.

360.

361.

(38, 7,11, 4, 4, 0) Gsus=1Zs
Hy =7 (=Zs Ga/(=1
lens space £(6,7)

(3, 7,11, 4, 4,16) G347 = (a,b | ab 3ab=1,b"ta’b"ta"t =1)

H1 = ZQ X ZQ C =7 0347/< = A+(6,4,2) ¢347 L a— G267.6L, b = GQﬁ?.b
(3, 7,11, 4, 6, 0) Gsaug=1

H =1 (=1 G348/<=1
homotopy sphere S, representative

(3, 7,11, 4, 6, 2) Gz = (a,b] a® = ba?b, b = a*ba?)

H1 = Z6 CZ 7 Gg49/< = A+(5,4,2) ¢349 L a = Gzﬁl.a, bl—> Gggl.b
(38, 7,11, 4, 8,16) G350 = (a,b | a® =b> = (a7'b)?)

Hy =712 (=2 Gss0/¢ = A*(6,3,2) —

(3, 7,11, 6, 2, 2) Gz51 =713

Hy =73 (=713 Gs51/¢=1

lens space £(13,7)

(38, 7,11, 6, 4, 0) Gss2 =Z1x
Hiy =71 (=711 Gs52/(=1
lens space £(11,7)

(38, 7,11, 6, 6, 0) Gasz3 =124
Hi =174 (=274 Gss3/(=1
lens space £(4,7)

(3,9, 9,0, 2, 2) Gz = (a,b | ab 3ab~ ! = 1,ab2a4 = 1>

Hy =74 (=712 G354/ = Do ¢354 1 a > Gios.0, b= Gia5.b
( 3, 9, 9, O, 4, 2) G355:Z2*Z3
H1=Z2XZ3 <=1 G355/<=Z2*Z3
connected sum £(2,1)#L£(3,1)

( 3, 9, 9, 2, 4, O) G356:Z3*Z6

Hy =73%x7¢ (=1 G3s6/C = 73 * Zg
connected sum

( 3, 9, 9, 2, 8, O) G357:Z3*Z6

H =7Z3xZ¢ (=1 G3s7/¢ = L3 * Lg
connected sum

( 3, 9, 9, 4, 4, 2) G358:Z2*Z2

H =7,xZy (=1 G358 /C = Zo * Ly
connected sum £(2,1)#L£(2,1)

(3,9, 9,4, 4,16) Gss = (a,b|ab %ab=1,ab"'a b7 a® =1)

Hy =17Zs (=17 G350/C = AT(5,5,2) @359 : a — Gaga.a, b Gaga.b
( 3, 9, 9’ 4’ 6, 2) G360 ZQ*ZQZ

H =7,xZy (=1 G360/C = Zo * Ly
connected sum £(2, 1)#L£(2,1)

(3,9,09, 4, 8, 2) G1=ZLy*Zy

H =7,x72s (=1 G361/C = Zo * Ly
connected sum
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362. ( 3, 9, 9, 6, 6, 2) Gsp2 = Zs
Hy =75 (=2Zs Gsze2/C=1 —
lens space £(5,7)
363. ( 5, 5,11, 0, 2, 4) Gzp3 = Z19
Hy =719 (=719 Gse3/C=1 —
lens space £(19,7)
364. ( 5, 5,11, 0, 2,12) Gz¢s = {a,b | a®b? = 1,abab~tab=t = 1)

H, =74 C = Zg G364/< = Ay D364 : a e 3a — Gyo.a, a”1® — Gag.b
365. ( 5, 5,11, 0, 4,10) Gs¢5 = Zg
Hy =Zg (=2Zy Gz5/¢=1 —

lens space £(9,7)
366. ( 5, 5,11, 0, 4,14) Gsg6 = Z1g
Hy =79 (=Z19 Gse6/¢=1 —
lens space £(19,7)
367. ( 5, 5,11, 2, 0, 2) Gs¢r = {(a,b | ab®a® = 1,ab 3ab~! = 1)
Hy =716 (=2Zs Gse7/¢ = Dg P367 : a— Gag.a, ba™' — Gag.b
368. ( 5, 5,11, 2, 0, 6) Gses = {(a,b | ab—ta%bababa’b=tab~! = 1,ab"tababa’b=! = 1,0 = 1)
H1=Z2XZ Czl GggS/CZZQ*Z (]536830,’—>G2.CL, bHGQb
369. ( 5, 5,11, 2, 0, 8) G369 = Zoy
Hy =74 (=7 Gse/(=1 —
lens space £(24,7)
370. ( 5, 5,11, 2, 0,10) G379 = Z1s
Hy =716 (=71 Gsr/(=1 —
lens space £(16,7)
371. ( 5, 5,11, 2, 0,12) G371 = {(a,b | a*b? = 1,ab"tab"tabab—' = 1)
H =ZsxZy (=17 Gsr1 /¢ = AT(4,4,2) ¢371: a— Giae.a, ab™ ' — Giye.b
372. ( 5, 5,11, 2, 2, 8) Gz7a = {a,b| ab ta’ba® = 1,ab"ta b~ ta 2" ta" b1 =1)

H1 = Z24 C ? G372/< ? (25372 . ab = GQQQ.CL, a t— Ggog.b
373. ( 5, 5,11, 2, 2,12) G373 = {a,b|ab tab=1,b"ta %1 =1)

Hy =174 (=2Zy Gsr3/¢ =D ¢373 1 a— Gur.a, b Gy7.b
374. ( 5, 5,11, 2, 4, 2) Gzrq = {a,b | b= a3ba?, a* = b*a=1b?)

Hy =74 ¢? G3ra/C? —

representative

375( 5, 5,11, 2, 4, 6) G375:Z2*Z3
H1=Z2XZ3 <=1 G375/<=Z2*Z3 —
connected sum £(2,1)#L£(3,1)

376. ( 5, 5,11, 2, 4,10) Gzze = {a,b| ab tab=1,b"1a b 2a 371 = 1)

Hy =7Zs (=2Zs G/ =D ¢376 : bab — G334.a, b G334.b
377. ( 5, 5,11, 2, 6, 2) Gz = {a,b| a* =b%= (ab™1)3)

Hy =275 C =7 G377/< = A+(4v 3, 3) T
378. ( 5, 5,11, 2, 6, 8) G373 = {a,b| b taba=1,b"ta 30"t =1)

H, =74 CZZQ G378/<=D6 ¢378 :a‘1|—>G9.a, bHng

379. ( 5, 5,11, 2, 6,10) G379 = {a,b | ab=tab ta 30"t = 1,ab 2ab~ta"tba= 10t = 1)
Hy =73 (=17 Gar9/C = AT(4,3,3) 379 : a— Gaos.a, ab™ +— Gaog.b
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380. ( 5, 5,11, 4, 0,10) Gsso = {a,b]| a??* =1,ab"ta b7 tab"t = 1)

H, = Zg C =7y Gggo/c = DG ¢380 : a‘lb — Glg.a, ab_la — Glg.b
381. ( 5, 5,11, 4, 2, 4) G3g1 = {a,b|a,b|a®b1a"2b"! =1,ab 2a%ba = 1)
Hy =77 (=714 Gs1/( =45 @381 1 a > Gizs.a, b— Gi35.b

382. ( 5, 5,11, 4, 2, 8) G3ga = {a,b|ab ta 2b"1a 27! =1,ab ta b 1a?b la = 1)
Hy =76 xZ3 (=17 Gss2/C = AT(3,3,3) ¢3s2 : a— Gagg.a, ba® — Gagob
383. ( 5, 5,11, 4, 4, 8) Gss3={(a,b| b laba=1,b"1a3b 2a 4" 1 = 1)

Hy =17Zg (=2Zs Gs3/( =Dy ¢383 : bab — G334.a, b G334.b
384. ( 5, 5,11, 4, 4,10) G3gq = {a,b | ab ta"tba"'b"ta = 1,a%ba'b"ta"tba = 1)
Hl = Zg C =7 G3g4/< = A+(8,372) ¢3g4 ra— G413.CL, a’lb*1a3 — G413.b
representative
385. ( 5, 5,11, 4, 8, 4) Gss5 = {(a,b| a” =b>= (a72b)3)
H, =75 C =7 G3g5/< = A+(7, 3, 2) ¢3g5 a G431.CL74(G431.CLG431.I)71)2,

b— G431.bG431.a_1
representative; group can be also presented as (a,b | a” = b=%,b% = (a=1b)?)
386. ( 5, 5,11, 4, 8, 8) Gsgg = Z12
Hy =71 (=712 Gss/C=1 —
lens space £(12,7)
387. (5,7, 9,0, 2,2 Gssr={a,b|ab 3ab™t =1,ab%a® = 1)

Hy =710 %x2Zy (=1Zyo Gss7/(=Ds P3s7 1 a — Ger.a, ab=?t — Ge1.b
388. (5,7, 9,0, 2, 4 Gsgs="Zp
Hy = Zog (=7Zs Gsss/(=1 —

lens space £(26,7)
389. ( 5, 7, 9, 0, 2,12) G3gg = {a,b | a®b? = 1,abab~tab=tab~! = 1)

Hi =7 (=714 Gs9/C =54 P39 : a0 ab® — Gro.a, b a0 — Grob
390. ( 5, 7, 9, 0, 4,14) G390 = {a,b | ab 3ab™t = 1,0%a" ¢ =1)
Hy =710 xZo (=1Z1o Gago/¢= D12 ¢390 : a > G131.0, b+— Gi31.b

391. ( 5, 7, 9, 0, 6, 4) G391:Z2*Z4
H1=Z2XZ4 <=1 G391/<=Z2*Z4 —
connected sum

392. ( 5, 7, 9, 2, 0, 2) G392 = {a,b | ab*a=1,abtab ta?b~! = 1)

Hy = Zss (=172 G392/C =54 $392 1 b— Gigg.a, ab™ +— Gizg.b
393. (5, 7,9, 2, 0,12) G393 = {(a,b| ab~tabab™! = 1,a*? = 1)

Hy = Zo ¢ =71 G393/C =54 P393 : ' — Gez.a, b1 — Gz b
394. ( 5, 7, 9, 2, 2, 4) Gzosa = {a,b|ab 2a"'b"2 = 1,a%ba®ba’b1 = 1)

Hy =74 ¢? G304/C 7 P304 : a*b — Gap9.a, a — Gapg.b
395. (5, 7, 9, 2, 2,12) G395 = {a,b | ab~tab? = 1,ab ta3b"1 = 1)

Hy =7, (=72 G395/C =54 $395 : a— Gs1.a, b1 — Gs1.b
396. ( 5, 7, 9, 2, 4, 4) G396 = {a,b|ab ta"2b"tab=2 = 1,ab 'a®baba = 1)

Hy = Zso ¢? G306/C 7 $396 : b~ — Gaor.a, a — Gaor.b

representative

397. ( 5, 7, 9, 2, 6, 0) G397:Z2*Z7
H1=Z2*Z7 <=1 G397/<:Z2*Z7 —
connected sum
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398. (5, 7, 9, 2, 8, 0) Gzgs={a,b|ab tab=3 =1,ba"tba* =1)

Hy =716 (=17Zg G398/¢ = Dio $398 : a +— Geg.a, b Geg.b
399. (5, 7, 9, 2, 8, 2) Gsg9={a,b|ab la™2b"1 =133 =1)

H, =Zg (=%Z¢ Gsg9/C= Ay ¢399 : a'l — Gyg.a, a %alt — Gyg.b
400. ( 5, 7, 9, 4, 0, 2) Guoo =217

Hy =77 (=217 Gao/(=1 —

lens space £(17,7)
401. ( 5, 7, 9, 4, 0,14) Gyo1 = {a,b | ab ta*b™t = 1,ab~tab* = 1)

Hy = Zq9 ¢ = Zsg G401/C = As ¢a01 1 a > Gr43.0, b= Giy3.b
402. ( 5, 7, 9, 4, 2, 2) Gaoz = {a,b|ab 3a® =1,a 2ba"2ba"2b"2 = 1)

H, =7¢ x Zs3 C =7 G402/C = A+(3, 3, 3) (15402 ra— Gggg.a, a”2%b — Gggg.b
403. ( 5, 7, 9, 4, 6, 0) Guoz = 7o x Ly

Hy=ZoxZ7 (=1 Ga03/C = Lo * Ly —

connected sum
404. ( 5, 7, 9, 4, 6, 2) Gaoa=(a,b| ab3a®> =1,ab"tab~ a2 =1)

H, =73 x Zs3 CZZ G404/<=A+(3,3,3) ¢404 :a+— Ggg.a, b_1|—>G69.b
405. ( 5, 7, 9, 4, 6, 4) Gaos = (a,b| ab ta b7t =1,0%a? = 1)

Hy =174 (=2Zy Gaos/¢ = Dg Pa05 : a”t — Go.a, b— Go.b
406. ( 5, 7, 9, 4, 6,14) Gy = {a,b| a® =b> = (ab™?)3)

H, =Z¢g (=7 Gao6/¢ = AT(5,3,3) —

representative
407. ( 5, 7, 9, 4,10, 4) Gyor = {(a,b| a® = b%ab? a® = ba=1b3)

Hy = Zso ¢? Gao7/C 7?7 —
408. ( 5, 7, 9, 4,10,14) Gyos = {a,b | ab=tab?ab™! = 1,a " *3a" = 1)

Hl = Zg C =7 G4O8/C = A+(5,373) ¢408 : CLil [ G258.CL, abil — G258.b
409. ( 5, 7, 9, 6, 0, 4) Guagg = Z19

Hy = Zyg (=2Z19 Gao/(=1 —

lens space £(19,7)
410. ( 5, 7, 9, 6, 4, 0) Gaio={a,b| b ta"tba "t = 1,0 ta b ta® = 1)

H1:Z4 C:ZQ G410/C:D6 (]5410:@’—76'9.@, bHng
411. (5, 7, 9, 6, 4, 4) Ga11 = {a,b| b 2a"'b? = 1,ab tabab = 1,a%b~2a?b"2a = 1)

Hy =77 (=2Z3s Gu1/{= A5 ¢a11: 7

fundamental group is isomorphic to the group of size 2040,

which is an extension of Zi7 X As

412. ( 5, 7, 9, 6, 6, 0) Guio = 7o x Ly

H1:Z2XZ7 <=1 G412/<:Z2*Z7 —

connected sum
413. (5, 7, 9, 6, 6,12) Guz = {(a,b| a®=1* = (ab)?)

H, =7 (=7 Gu3/¢C = AT(8,3,2) —
414. ( 5, 7, 9, 6, 6,14) Gaia = {a,b|ab ta b7 a = 1,ab tabab=2ab = 1)

Hy =7Zq (=714 Gua/(=A45 Ga14 17

GAP code for the group is [840,13]
415. ( 5, 7, 9, 6, 8, 2) Gu5 = {(a,b| a® =b*= (a?b1)?)

Hy =712 (=2Z¢ Gas/¢ = Do —
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416.

417.

418.

419.

420.

421.

422.

423.

424.

425.

426.

427.

428.

429.

430.

431.

432.

(5,7,9, 6, 8,12) Gui6={a,b|ab ta b 1a® = 1,ab"tabab—2ab = 1)

H1 = Z6 C =7 G416/< = A+(5, 47 2) ¢416 L a = Gglo.a, ab (g G310.b

(5,7,9, 6,10,12) Gu7 = {a,b | ab=2a® = 1,abab~tab = 1)

H, =74 C = Zg G417/< S A4 (;5417 ca1p=60q=1p=58 G49.Cl7
a0 1p757 s Gug.b

(5,7,9, 6,10,14) Gug = {a,b| ab 2a"b"2a = 1,ab" tab’abta? = 1)

Hy = Zoo ¢? Gug/C? P18 a b7t Gaor.a, a— Gyor.b

(7,7,7,0, 2,2 Guo="{a,b|ab?a®=1,b"2ab"tab tab~t =1)

Hy =7Zxn (=714 Gauo/(=A4 Par9 : ab~! — Geg.a, a= — Geg.b

(7,7, 7,0, 2,10) Gazo = {a,b|a?b?=1,a"b"tab"tab~tab™! = 1)

Hy =714 C =714 G420/C = 54 (]5420 b lap 18 — G70.CL, a"1p~ gl — G7Q.b

(7,7,7,0, 4, 4) Guo = Zo

Hy =7y (=1Zyn Gun/(=1 —

lens space £(21,7)

(7,7,7,0, 6, 6) Gpn="17~;

Hy = ¢= Ga /¢ = Ga22 :

(7, 7,7, 2, 2,2 Gaz={a,b|a’bta=0ba"103= (a?h?)?)

Hy =75 xZs (7 Ga23/C 7 Pan3 : a— Ga30.a*Gazo.b™ 1,
b— G430.&G430.b

representative

(7,7, 7,2, 2, 48 Gau=17s

Hy =Zs (=2Zs Gau/(=1 —

lens space £(5,7)

(7,7, 7, 2, 2, 8) Gya5={(a,b|ab2abta?b~ =1,a v ta 0 ta b ta tha 1 =1)
Hy =74 ¢? Gaz5/C 7 ¢a25 : ba — G3rg.a, a > Gzrg.b
(7,7, 7, 2, 2, 8 Gip=I(a,b]|ab?a=1,abab tab=t =1)
H, =7g C =7y G426/< = Dg ¢426 b lag — Glg.a, ba"1b +— Glg.b
(7,7, 7,2, 2,10) Gar = (a,b|a®b*a=1,ab"'a 30" ab™ =1)
H, =7g C =7 G427/< = A+(4,4,3) ¢427 a— G274.6L, b1l — G274.b
(7,7, 7,2, 6,100 Gazg = {(a,b]| a* =b%a"10% b3 = a3b"1a?)
Hi =174 ¢? Gas/C? —
representative
(7,7,7, 2,8, 8 Guo=I{(a,b|ba‘b"ta"tb=1,ab"ta"b7la=1)
H1 = Zg C =7 G429/< = A+(4, 37 3) (,25429 : ab = GQQS.CL, a t— Gggs.b
(7,7, 7, 4, 4, 4) Guzo={a,b|ab ta b~ ta" b tab=2 = 1,ab tabababta = 1)
Hy =75x%Z5 (7 Ga30/C ? Pas0 : a — Gaz3.a®Gya3b?,
b— G423.&2G423.b_1G423.0,
(7,7, 7, 4, 4, 8 Gu31={(a,b|btatbaba™ =1,b7ta"b%a 0 tab~ta 21 =1)

H, =75 C =7 G431/< = A+(7, 37 2) (,25431 ra— G385.0,_2, b— G385.a_2G385.b

(7,7,7, 4, 6, 6) Gaz=1{a,b|ba b ta"tb=1ab"ta"b"ta=1)
Hy =73 C(=2Zy Gaz2/¢= A4 ¢a32 1 a— Giz.a, b— Gi3.b
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433. (7, 7, 7, 6, 6, 6) Gazz = {(a,b|a*b~ta " tbaba=b~! =1,ab"ta"*b%a b tab = 1)
Hi =1 CZZ G433/<=A+(7,372) ¢433 ?
the famous torus link (3,7), this 3-manifold is homeomorphic with
the 3-manifold represented by (4,4,12,3,3,11). Thus isomorphism with
(339 must exist, we did not construct it.
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