

On Siamese Association Schemes

Martin Mačaj

October 4th, 2016

Overview

- Introduction
- Siamese association schemes
- Constructions
- Results
- Open problems

Related objects

- Association schemes; strongly regular graph (SRG), distance regular graph (DRG).
- Incidence structures; generalized quadrangle (GQ), affine plane (AP), projective plane (PP), Steiner system, group divisible design (GDD).
- Matrices; adjacency matrix, incidence matrix, permutation matrix, lift of a matrix, balanced generalized weighing matrix (BGW)

Siamese association schemes

Siamese color graphs

Let $SRG(q) = SRG((q+1)(q^2+1), q(q+1), q-1, q+1)$.

A *spread* in a $SRG(q)$ is a system of q^2+1 pairwise disjoint cliques of size $q+1$.

Let $\Gamma_1, \Gamma_2, \dots, \Gamma_{q+1}$ be $SRG(q)$ s with a common spread Σ such that each edge of the complete graph on $(q+1)(q^2+1)$ vertices not belonging to Σ belongs to exactly one Γ_i .

Let $\Delta_i = \Gamma_i - \Sigma$. Then, the system $\Sigma, \Delta_1, \dots, \Delta_{q+1}$ is a *Siamese color Graph* on $(q+1)(q^2+1)$ vertices ($SCG(q)$).

We will usually work with adjacency matrices S, R_1, \dots, R_{q+1} .

Why Siamese color graphs

- R.C. Bose (1963): Point graph of a $GQ(q)$ is a $SRG(q)$ (*geometric*).
- A. Brouwer (1984): $SRG(q) - \Sigma$ is a distance regular graph, antipodal with respect to Σ ($= DRG(q)$).
- *Geometric DRG(q), SCG(q).*
- S. Reichard (2003): Union of all blocks of all $GQ(q)$ s in a geometric $SCG(q)$ is a Steiner system $S(2, q+1, (q+1)(q^2+1))$.

Siamese association schemes

Let $W = \{S_1, \dots, S_n, R_1, \dots, R_{q+1}\}$ be an association scheme on $(q+1)(q^2+1)$ vertices. We say that W is a *Siamese association scheme* of order q ($SAS(q)$) if $\{S, R_1, \dots, R_{q+1}\}$ is a $SCG(q)$.

- $\sum S_i = S + I$.
- W may be non-commutative.

History

- 2003: H. Kharaghani and R. Torabi – an infinite family of Siamese color graphs.
- 2003: S. Reichard (Thesis) – an infinite family of Siamese association schemes (these two families may coincide).
- 2005: M. Klin, S. Reichard and A. Woldar – classification of Siamese color graphs for $q = 2$ (2 color graphs, 1 scheme). Hundreds of geometric Siamese color graphs for $q = 3$.
- 2015: M. Klin, M.M. – classification of Siamese color graphs for $q = 3$ (25245 color graphs, 2 schemes).

Constructions

Balanced generalized weighing matrices

Let (G, \cdot) be a group not containing 0 and let $\overline{G} = G \cup \{0\}$. A *balanced generalized weighing matrix* with parameters (v, k, μ) over G , shortly $BGW(v, k, \mu, G)$ is a $v \times v$ matrix $M = [g_{ij}]$ over \overline{G} such that each column contains exactly k non-zero elements and for any $a, b \in \{1, \dots, v\}$, $a \neq b$ the multiset

$$\{g_{ai}g_{bi}^{-1} : 1 \leq i \leq v, g_{ai} \neq 0, g_{bi} \neq 0\}$$

contains each elements of G exactly $\mu/|G|$ times.

BGW's have many applications in combinatorics. In particular, they represent GDDs on which G acts semi-regularly on points and lines (Jungnickel).

Lift of a **BGW**

Let G be a group with elements $\{g_q, \dots, g_n\}$ and let M be a matrix with coefficients in $G \cup \{0\}$ (e.g. a $BGW(v, k, \mu, G)$). The *lift* of M the $vn \times vn$ matrix $L(M)$ obtained from M by replacing each 0 in M by the $n \times n$ zero matrix and each g_i by the permutation matrix P_i corresponding to $x \mapsto x * g_i$.

If M is a BGW then $L(M)$ is the incidence matrix of a GDD.

Siamese matrices

Let G be a group of order $q + 1$. We say that a matrix $M = BGW(q^2 + 1, q^2, q^2 - 1, G)$ is a *Siamese matrix* of order q ($SM(q)$) over G if all the diagonal elements are equal to 0 and $m_{ij} = m_{ji}$ for any i, j (note that all the off-diagonal elements are non-zero).

Abelian, cyclic Siamese matrices.

Cyclic $SM(q)$ to $SCG(q)$

Theorem (H. Kharaghani and R. Torabi, 2003). *Let $q > 1$ be a positive integer, let (G, \cdot) be a **cyclic** group of order $q + 1$ with elements g_1, g_2, \dots, g_{q+1} and let M be a Siamese matrix over G . Let ι be the involutory permutation of $\{1, 2, \dots, q + 1\}$ given by $i^\iota = j$ iff $g_i^{-1} = g_j$. For any $g_i \in G$ let*

$$R_i = L(M) \cdot L(D_i^{q^2+1}) \cdot L(D_{g_i}^{q^2+1})$$

*and let $S = J - I - \sum R_i$. Then $W = \{S, R_1, \dots, R_{q+1}\}$ is a **Siamese color graph**.*

$GF(q^2)$ to **cyclic** $SM(q)$

H. Kharaghani and R. Torabi (2003) presented a construction of a cyclic $SM(q)$ from a finite field of order q^2 . They presented it as a special case of a construction of P. Gibbons and R. Mathon (1987) which will be introduced later.

Abelian $SM(q)$ to $SAS(q)$

Theorem. *Let $q > 1$ be a positive integer, let (G, \cdot) be an **abelian** group of order $q + 1$ with elements g_1, g_2, \dots, g_{q+1} and let M be a Siamese matrix over G . Let ι be the involutory permutation of $\{1, 2, \dots, q + 1\}$ given by $i^\iota = j$ iff $g_i^{-1} = g_j$. For any $g_i \in G$ let*

$$\begin{aligned} S_i &= L(D_{g_i}^{q^2+1}), \\ R_i &= L(M) \cdot L(D_i^{(q^2+1)}) \cdot S_i. \end{aligned}$$

*Then $W = \{S_1, \dots, S_{q+1}, R_1, \dots, R_{q+1}\}$ is a **Siamese association scheme** (if $q_i = e_G$ then $S_i = I$).*

The fact that ι is a group automorphism is crucial.

Affine plane to $SM(q)$ (P. Gibbons and R. Mathon (1987))

Let A be an affine plane of order q (we are not assuming that q is a prime power) with points $\{p_1, \dots, p_{q^2}\}$ and parallel classes c_1, c_2, \dots, c_{q+1} .

Let $N = (n_{ij})_{q^2 \times q^2}$ be the color graph of A , that is $n_{ii} = 0$ and for $i \neq j$ n_{ij} is the parallel class c_k which contains unique line in A through p_i and p_j .

Let $(G, .)$ be a group of order $q + 1$ and let φ be any bijection between $\{c_1, \dots, c_{q+1}\}$ and G . Then the $q^2 + 1 \times q^2 + 1$ matrix $M = M(G, A, \varphi)$ defined by $m_{ii} = 0$ for any i ; $m_{ij} = n_{ij}^\varphi$ for $1 \leq i, j \leq q^2$, $i \neq j$; and $m_{i(q^2+1)} = m_{(q^2+1)i} = e_G$ for $1 \leq i \leq q^2$, is a $SM(q)$ over G .

Some notation

- $M = BGW(A, G, \varphi)$, $W = SAS(M, G)$, $W = SAS(A, G, \varphi)$,
- $W = SAS(A, G, \varphi)$ is *affine*,
- $\Gamma = SRG(q)$ or $\Delta = SRG(q)$ is *affine* if it appears in an affine SAS,
- SAS $W = \{S_1, \dots, S_{q+1}, R_1, \dots, R_{q+1}\}$ is *thin*.

Results

Theoretical results

- Natural sufficient condition for $SAS(A, G, \varphi)$ and $SAS(A', G, \varphi')$ to be isomorphic.
- Sufficient and necessary condition for $SAS(M, G)$ and $SAS(M', G)$ to be isomorphic.
- Each thin SAS is a $SAS(M, G)$.
- Families of H. Kharaghani and R. Torabi and of S. Reichard are isomorphic.

Computational results

All the affine planes of order $q \leq 10$ are known. Here are the numbers of corresponding affine objects.

q	<i>planes</i>	<i>groups</i>	<i>schemes</i>	<i>DRGs</i>	<i>SRGs</i>	<i>GQs</i>
2	1	1	1	1	1	1
3	1	2	2	$2 + 1^*$	2	1
4	1	1	1	1	1	1
5	1	1	3	3	3	1
6	0	1	0	0	0	0
7	1	3	24	$29 + 3^*$	29	1
8	1	2	14	14	14	1
9	7	1	1517	2899	2899	1
10	0	1	0	0	0	0
11	1?	2	10955?	25753?	25753?	1?

Different groups

q	<i>Group</i>	<i>schemes</i>	<i>DRGs</i>	<i>SRGs</i>
3	\mathbb{Z}_4	1	1	1
3	\mathbb{Z}_2^2	1	$1 + 1^*$	1
7	\mathbb{Z}_8	11	14	14
7	$\mathbb{Z}_4 \times \mathbb{Z}_2$	10	12	12
7	\mathbb{Z}_2^3	3	$3 + 3^*$	3
8	\mathbb{Z}_9	11	11	11
8	\mathbb{Z}_3^2	3	3	3
11	\mathbb{Z}_{12}	8201?	15550?	15550?
11	$\mathbb{Z}_6 \times \mathbb{Z}_2$	2754?	10203?	10203?

* Some affine SRG's contain also a non-affine DRG's
 ? numbers only for the Desarguesian plane

Different planes

There exist 4 non-isomorphic projective and 7 non-isomorphic affine planes of order 9. It turns out that non-isomorphic affine planes of order 9 give rise to non-isomorphic affine Siamese objects. In the following table we give the numbers of Siamese objects for each plane.

<i>nr</i>	<i>proj. plane</i>	<i>schemes</i>	<i>DRGs</i>	<i>SRGs</i>
1	<i>Desargue</i>	85	139	139
2	<i>Hall</i>	60	104	104
3	<i>Hall</i>	214	428	428
4	<i>dualHall</i>	60	104	104
5	<i>dualHall</i>	214	428	428
6	<i>Hughes</i>	214	428	428
7	<i>Hughes</i>	670	1268	1268

Symmetries of affine $DRG(9)$ s

$ Aut(\Delta) $	<i>graphs</i>
2	416
4	92
8	19
16	418
20	2
32	4
36	1252
40	1
64	8
72	16
144	416

$ Aut(\Delta) $	<i>graphs</i>
288	4
324	88
576	8
648	11
1296	122
1620	2
2592	6
3240	1
5184	11
6480	1
2125440	1

Comments on affine objects (for $q \leq 10$)

- There are only natural isomorphisms, different APs give different SASs.
- SRG appear in unique SAS, with unique DRG.
- SAS may contain different SRGs/DRGs.
- Elementary Abelian 2-groups force non-affine DRGs (Mersenne primes).
- Just the classical GQ.

Open problems

Understand the construction

- Explain the role of $AP, G, SM, GDD \dots$
- Prove the computations (for all q 's).
- Predict new results.
- Double covers of $DRG(q)$ s?

Reverse implications

	prime power	\Rightarrow
\Rightarrow	affine plane	\Rightarrow
\Rightarrow	(Abelian) Siamese matrix	\Leftrightarrow
\Leftrightarrow	thin SAS	\Rightarrow
\Rightarrow	Siamese association scheme	

Which of the implications can be reversed?

Covers and lifts for incidence structures?

The theory of covers and lifts is used to study semi-regular actions of groups on graphs.

Are there applications for incidence structures?

Thank You

Generalized Quadrangles

A *generalized quadrangle* (GQ) of order q is an incidence structure such that:

Each block (line) contains $q + 1$ points;

Each point lies on $q + 1$ lines;

For each line l and point $P \notin l \exists!$ line through P intersecting l .

We write $GQ(q)$. Dual structure to $GQ(q)$ is also a $GQ(q)$.

Point graph of a GQ has vertices points of GQ , two vertices are adjacent iff they are collinear.

A *spread* S in a generalized quadrangle $GQ(q)$ is a partition of its vertex set into $q^2 + 1$ classes of size $q + 1$, such that points in each class are pairwise collinear.

Affine planes

An *affine plane* is an incidence structure such that:

- each pair of points lies on a unique line;
- for any line l and any point P not incident with l , there is exactly one line incident with P that does not meet l ;
- there are four points such that no line is incident with more than two of them.

Affine plane is of order q if each line contains exactly q points.

If we remove points of a line from a projective plane we obtain an affine plane (a line at infinity). This construction can be reversed.