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Graphs

Graph - connected, undirected graph (loops, semi-edges and parallel
edges are allowed)

a semi-edge parallel edges a loop
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Surfaces

Surface - 2-dimensional manifold - orientable or not, with or without
boundary

Torus with one hole 2-sphere with two holes

Marcel Abas On regular map homomorphisms



GEMS 2009 Tále

Maps

Map M - a graph G embedded in a surface S such that every face of the
embedding is homeomorphic to an open disc or to a half-disc
{[x, y] ∈ E2|x2 + y2 < 1, y ≥ 0}

A single vertex graph with one loop and one semi-edge
cellularly embedded into the Möbius band
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Edges, darts, flags

Edges

interior edge (not semi-edge)
interior semi-edge
boundary semi-edge

Darts - an edge (not a semi-edge) gives rise to two darts
- a semi-edge gives rise to one dart

Flags - a dart gives rise to two flags corresponding to the two
”sides” of the dart

Edges Darts Flags
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Description of maps

Involutions τ , λ and ρ acting on the flag set of the map

τ : transversal reflection - interchanges the flags associated with a
dart
λ: longitudinal reflection - interchanges the flags along an edge
ρ: corner reflection - swaps the flags incident with a ”corner” of the
map

ρfρf

f

f λfλf

τfτf

Involutions τ and ρ are fixed free

Involutions λτ and λ may fix a flag (free and boundary semi-edge)

We simply write M = M(F ; τ, λ, ρ)
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Map homomorphisms

M̃ = M̃(F̃ ; τ̃ , λ̃, ρ̃), M = M(F ; τ, λ, ρ) - maps

A map homomorphism - a function ϕ : F̃ → F such that

τϕ(f̃) = ϕ(τ̃ f̃)
λϕ(f̃) = ϕ(λ̃f̃)
ρϕ(f̃) = ϕ(ρ̃f̃)

A map homomorphism - a branched and folded covering from the
supporting surface of M̃ to the supporting surface of M with branch
points at the

centers of faces
dangling ends of semi-edges
vertices

of the map M̃ .

Marcel Abas On regular map homomorphisms
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Branch points

×

f̃

BP at the centre of face ×

f
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Branch points

×
BP at the dangling end of semi-edge

×
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Longitudinal fold

×
Folding at the centre of edge
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Map homomorphisms without transversal and corner folds

A map homomorphism ϕ : M̃ → M is without

transversal folds if ϕ(f̃) 6= ϕ(τ̃ f̃) for each f̃ ∈ F̃
corner folds if ϕ(f̃) 6= ϕ(ρ̃f̃) for each f̃ ∈ F̃

that is, there are no folds at the vertices of M̃ .

Marcel Abas On regular map homomorphisms



GEMS 2009 Tále
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Map isomorphisms and automorphisms

A map homomorphism ϕ : M̃ → M is a map isomorphism if ϕ is a
one-to-one mapping

A map isomorphism ϕ : M̃ → M is a map automorphism if
M = M̃

Aut(M̃) is the automorphism group of M̃ - the set of all
automorphisms of M̃ under composition of mappings
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Regular map homomorphisms

A homomorphism ϕ : M̃ → M without transversal and corner folds
is regular if there exists a subgroup Γ of Aut(M̃) such that for any
two flags f̃1, f̃2 of M̃ we have ϕ(f̃1) = ϕ(f̃2) if and only if
f̃2 = γ(f̃1) for some map automorphism γ ∈ Γ.

If ϕ : M̃ → M is a regular map homomorphism then M is
isomorphic to the quotient map M̃/Γ.

Marcel Abas On regular map homomorphisms
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Lifts of graphs

0

1

2

Dumbbell graph

Voltage group is Z5

Lift by Z5

Petersen/Z5

Petersen graph

The lift of dumbbell graph
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Lifts of maps

0

1

2

An embedding of DG

in projective plane

Lift by Z5

P in PP/Z5

An embedding of P

in projective plane
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Regular homomorphisms and lifts

M̃ = M̃(F̃ ; τ̃ , λ̃, ρ̃), M = M(F ; τ, λ, ρ) - maps

ϕ : M̃ → M - a regular map homomorphism with the corresponding
group Γ < Aut(M̃)
α : F (M) → Γ - a voltage assignment on M which realises the map
M̃
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Composition of regular homomorphisms - part 1

Let M,M1 and M2 be maps

Let ϕ1 : M → M1 and ϕ2 : M1 → M2 be regular homomorphisms

Then the homomorphism ϕ′ : M → M2 given by ϕ′(f) = ϕ2(ϕ1(f))
can be

A: regular

B: non-regular

An embedding of P

in double torus

Marcel Abas On regular map homomorphisms
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Composition of regular homomorphisms - part 2

Theorem 1:

Let M be a map
Let Γ = Γ1 × Γ2 ≤ Aut(M)

Then (M/Γ1)/Γ2
∼= (M/Γ2)/Γ1

∼= M/Γ and M → M/Γ is a
regular map homomorphism

bla

Theorem 2:

Let M be a map
Let Γ = Γ1 × Γ2 be a voltage group
Let α1 in Γ1, α2 in Γ2 and α = α1 × α2 in Γ be voltage assignments

Then (Mα1)α2 ∼= (Mα2)α1 ∼= Mα
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Composition of regular homomorphisms - part 2

Theorem 1:

Let M be a map
Let Γ = Γ1 × Γ2 ≤ Aut(M)

Then (M/Γ1)/Γ2
∼= (M/Γ2)/Γ1

∼= M/Γ and M → M/Γ is a
regular map homomorphism

bla

Theorem 2:

Let M be a map
Let Γ = Γ1 × Γ2 be a voltage group
Let α1 in Γ1, α2 in Γ2 and α = α1 × α2 in Γ be voltage assignments

Then (Mα1)α2 ∼= (Mα2)α1 ∼= Mα

Marcel Abas On regular map homomorphisms



GEMS 2009 Tále
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An application

by S3

w←wg

g∈S3

by S3

g∈S3
w←wg

by Z2

w

↑

w,w′

by Z2

wg

↑

wg ,w′
g

M0 : Disc Mα : Projective plane

M̃0 : 2− Sphere M̃α : 2− Sphere
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K

K. . . minutes to lunch . . .
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