On regular map homomorphisms

Marcel Abas

Department of Mathematics Faculty of Material Science and Technologies Slovak Technical University

June 30, 2009

・ 同 ト ・ ヨ ト ・ ヨ ト

	GEMS 200	9 Tále
Graphs	Graphs	

Graph - connected, undirected graph (loops, semi-edges and parallel edges are allowed)

向下 イヨト イヨト 三日

Surfaces	

Surface - 2-dimensional manifold - orientable or not, with or without boundary

Torus with one hole

2-sphere with two holes

・ 同 ト ・ ヨ ト ・ ヨ ト

	GEMS 2009	Tále
Maps		

Map M - a graph G embedded in a surface $\mathcal S$ such that every face of the embedding is homeomorphic to an open disc or to a half-disc $\{[x,y]\in E_2|x^2+y^2<1,y\geq 0\}$

A single vertex graph with one loop and one semi-edge cellularly embedded into the Möbius band

向 ト イヨ ト イヨ ト

◆ロ → ◆母 → ◆臣 → ◆臣 → ○ ● ● ○ ○ ○ ○

- Edges
 - interior edge (not semi-edge)
 - interior semi-edge
 - boundary semi-edge

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

- Edges
 - interior edge (not semi-edge)
 - interior semi-edge
 - boundary semi-edge
- Darts an edge (not a semi-edge) gives rise to two darts
 - a semi-edge gives rise to one dart

- Edges
 - interior edge (not semi-edge)
 - interior semi-edge
 - boundary semi-edge
- Darts an edge (not a semi-edge) gives rise to two darts - a semi-edge gives rise to one dart
- Flags a dart gives rise to two flags corresponding to the two "sides" of the dart

	GEMS 2009	Tále
Description of maps		

 \bullet Involutions $\tau,\,\lambda$ and ρ acting on the flag set of the map

	GEMS 2009	Tále
Description of maps		

- \bullet Involutions $\tau,\,\lambda$ and ρ acting on the flag set of the map
 - τ : transversal reflection interchanges the flags associated with a dart

	GEMS 2009	Tále	
Description of maps			

- \bullet Involutions $\tau,\,\lambda$ and ρ acting on the flag set of the map
 - τ : transversal reflection interchanges the flags associated with a dart
 - $\lambda:$ longitudinal reflection interchanges the flags along an edge

GEMS 2009	Tále
-----------	------

 \bullet Involutions $\tau,\,\lambda$ and ρ acting on the flag set of the map

- τ : transversal reflection interchanges the flags associated with a dart
- λ : longitudinal reflection interchanges the flags along an edge
- $\rho :$ corner reflection swaps the flags incident with a "corner" of the map

(日本) (日本) (日本) 日

- \bullet Involutions $\tau,\,\lambda$ and ρ acting on the flag set of the map
 - τ : transversal reflection interchanges the flags associated with a dart
 - λ : longitudinal reflection interchanges the flags along an edge
 - $\rho :$ corner reflection swaps the flags incident with a "corner" of the map

• Involutions τ and ρ are fixed free

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- \bullet Involutions $\tau,\,\lambda$ and ρ acting on the flag set of the map
 - τ : transversal reflection interchanges the flags associated with a dart
 - λ : **longitudinal reflection** interchanges the flags along an edge
 - $\rho :$ corner reflection swaps the flags incident with a "corner" of the map

- Involutions τ and ρ are fixed free
- Involutions $\lambda \tau$ and λ may fix a flag (free and boundary semi-edge)

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

 \bullet Involutions $\tau,\,\lambda$ and ρ acting on the flag set of the map

- τ : transversal reflection interchanges the flags associated with a dart
- λ : longitudinal reflection interchanges the flags along an edge
- $\rho :$ corner reflection swaps the flags incident with a "corner" of the map

- Involutions τ and ρ are fixed free
- Involutions $\lambda \tau$ and λ may fix a flag (free and boundary semi-edge)
- We simply write $M = M(F; \tau, \lambda, \rho)$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ● ● ● ●

Tále

Map homomorphisms

•
$$\tilde{M} = \tilde{M}(\tilde{F}; \tilde{\tau}, \tilde{\lambda}, \tilde{\rho}), M = M(F; \tau, \lambda, \rho)$$
 - maps

◆□ > ◆□ > ◆目 > ◆目 > ● 目 ● のへで

Tále

Map homomorphisms

- $\tilde{M} = \tilde{M}(\tilde{F}; \tilde{\tau}, \tilde{\lambda}, \tilde{\rho}), M = M(F; \tau, \lambda, \rho)$ maps
- A map homomorphism a function $\varphi: \tilde{F} \to F$ such that

(四) (三) (三) (三)

Tále

Map homomorphisms

- $\tilde{M} = \tilde{M}(\tilde{F}; \tilde{\tau}, \tilde{\lambda}, \tilde{\rho}), M = M(F; \tau, \lambda, \rho)$ maps
- A map homomorphism a function $\varphi: \tilde{F} \to F$ such that
 - $\tau \varphi(\tilde{f}) = \varphi(\tilde{\tau}\tilde{f})$ • $\lambda \varphi(\tilde{f}) = \varphi(\tilde{\lambda}\tilde{f})$
 - $\rho \varphi(f) = \varphi(\tilde{\rho}f)$

Tále

Map homomorphisms

- $\tilde{M} = \tilde{M}(\tilde{F}; \tilde{\tau}, \tilde{\lambda}, \tilde{\rho}), M = M(F; \tau, \lambda, \rho)$ maps
- A map homomorphism a function $\varphi: \tilde{F} \to F$ such that
 - $\tau \varphi(\tilde{f}) = \varphi(\tilde{\tau}\tilde{f})$ • $\lambda \varphi(\tilde{f}) = \varphi(\tilde{\lambda}\tilde{f})$
 - $\rho\varphi(f) = \varphi(\tilde{\rho}f)$
- A map homomorphism a branched and folded covering from the supporting surface of M to the supporting surface of M with branch points at the
 - centers of faces
 - dangling ends of semi-edges
 - vertices

of the map M.

GEMS 2009	Tále
-----------	------

Branch points

◆ロ → ◆母 → ◆臣 → ◆臣 → ○ ● ● ○ ○ ○ ○

	GEMS 2009	Tále	
Branch points			

F

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

GEMS 2009	Tále
-----------	------

Longitudinal fold

向下 イヨト イヨト

э

Tále

Map homomorphisms without transversal and corner folds

• A map homomorphism $\varphi: \tilde{M} \to M$ is without

Tále

Map homomorphisms without transversal and corner folds

• A map homomorphism $\varphi: \tilde{M} \to M$ is without • transversal folds if $\varphi(\tilde{f}) \neq \varphi(\tilde{\tau}\tilde{f})$ for each $\tilde{f} \in \tilde{F}$

Tále

Map homomorphisms without transversal and corner folds

- A map homomorphism $\varphi: \tilde{M} \to M$ is without
 - transversal folds if $\varphi(\tilde{f})\neq \varphi(\tilde{\tau}\tilde{f})$ for each $\tilde{f}\in\tilde{F}$
 - corner folds if $\varphi(\tilde{f}) \neq \varphi(\tilde{\rho}\tilde{f})$ for each $\tilde{f} \in \tilde{F}$

• • = • • = •

Tále

Map homomorphisms without transversal and corner folds

- A map homomorphism $\varphi: \tilde{M} \to M$ is without
 - transversal folds if $\varphi(\tilde{f}) \neq \varphi(\tilde{\tau}\tilde{f})$ for each $\tilde{f} \in \tilde{F}$
 - corner folds if $\varphi(\tilde{f}) \neq \varphi(\tilde{\rho}\tilde{f})$ for each $\tilde{f} \in \tilde{F}$

that is, there are no folds at the vertices of M.

A 3 5 A 3 5 A

Map isomorphisms and automorphisms

• A map homomorphism $\varphi:\tilde{M}\to M$ is a map isomorphism if φ is a one-to-one mapping

Map isomorphisms and automorphisms

- A map homomorphism $\varphi: \tilde{M} \to M$ is a map isomorphism if φ is a one-to-one mapping
- A map isomorphism $\varphi: \tilde{M} \to M$ is a map automorphism if $M = \tilde{M}$

Map isomorphisms and automorphisms

- A map homomorphism $\varphi: \tilde{M} \to M$ is a map isomorphism if φ is a one-to-one mapping
- A map isomorphism $\varphi: \tilde{M} \to M$ is a map automorphism if $M = \tilde{M}$
- $Aut(\tilde{M})$ is the automorphism group of \tilde{M} the set of all automorphisms of \tilde{M} under composition of mappings

(日) (日) (日) (日)

Regular map homomorphisms

A homomorphism φ: M̃ → M without transversal and corner folds is regular if there exists a subgroup Γ of Aut(M̃) such that for any two flags f̃₁, f̃₂ of M̃ we have φ(f̃₁) = φ(f̃₂) if and only if f̃₂ = γ(f̃₁) for some map automorphism γ ∈ Γ.

- 「同) - (三) - (三) - 三 三

Regular map homomorphisms

- A homomorphism $\varphi: \tilde{M} \to M$ without transversal and corner folds is **regular** if there exists a subgroup Γ of $Aut(\tilde{M})$ such that for any two flags \tilde{f}_1, \tilde{f}_2 of \tilde{M} we have $\varphi(\tilde{f}_1) = \varphi(\tilde{f}_2)$ if and only if $\tilde{f}_2 = \gamma(\tilde{f}_1)$ for some map automorphism $\gamma \in \Gamma$.
- If $\varphi: \tilde{M} \to M$ is a regular map homomorphism then M is isomorphic to the quotient map M/Γ .

(日) (日) (日) (日)

Lifts of graphs

Dumbbell graph Voltage group is \mathcal{Z}_5

▲□→ ▲ □→ ▲ □→ -

э

Tále

Lifts of graphs

Dumbbell graph Voltage group is \mathcal{Z}_5

Petersen graph The lift of dumbbell graph

向下 イヨト イヨト

Lifts of maps

An embedding of DG in projective plane

▲□→ ▲ □→ ▲ □→

э

Tále

Lifts of maps

An embedding of DG in projective plane

An embedding of P in projective plane

向下 イヨト イヨト

	GEMS 2009	Tále
Regular	homomorphisms and	l lifts

•
$$\tilde{M} = \tilde{M}(\tilde{F}; \tilde{\tau}, \tilde{\lambda}, \tilde{\rho}), M = M(F; \tau, \lambda, \rho)$$
 - maps

◆□ → ◆□ → ◆ 三 → ◆ 三 → の < ⊙

Regular homomorphisms and lifts

- $\tilde{M}=\tilde{M}(\tilde{F};\tilde{\tau},\tilde{\lambda},\tilde{\rho})$, $M=M(F;\tau,\lambda,\rho)$ maps
- $\varphi:\tilde{M}\to M$ a regular map homomorphism with the corresponding group $\Gamma < Aut(\tilde{M})$

Regular homomorphisms and lifts

- $\tilde{M} = \tilde{M}(\tilde{F}; \tilde{\tau}, \tilde{\lambda}, \tilde{\rho}), M = M(F; \tau, \lambda, \rho)$ maps
- $\varphi: \tilde{M} \to M$ a regular map homomorphism with the corresponding group $\Gamma < Aut(M)$
- $\alpha: F(M) \to \Gamma$ a voltage assignment on M which realises the map M

(国) (日) (日) (日)

Composition of regular homomorphisms - part 1

• Let M, M_1 and M_2 be maps

Composition of regular homomorphisms - part 1

- Let M, M_1 and M_2 be maps
- Let $\varphi_1: M \to M_1$ and $\varphi_2: M_1 \to M_2$ be regular homomorphisms

Composition of regular homomorphisms - part 1

- Let M, M_1 and M_2 be maps
- Let $\varphi_1: M \to M_1$ and $\varphi_2: M_1 \to M_2$ be regular homomorphisms
- Then the homomorphism $\varphi':M\to M_2$ given by $\varphi'(f)=\varphi_2(\varphi_1(f))$ can be

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Composition of regular homomorphisms - part 1

- Let M, M_1 and M_2 be maps
- Let $\varphi_1: M \to M_1$ and $\varphi_2: M_1 \to M_2$ be regular homomorphisms
- Then the homomorphism $\varphi':M\to M_2$ given by $\varphi'(f)=\varphi_2(\varphi_1(f))$ can be
 - A: regular

Composition of regular homomorphisms - part 1

- Let M, M_1 and M_2 be maps
- Let $\varphi_1: M \to M_1$ and $\varphi_2: M_1 \to M_2$ be regular homomorphisms
- Then the homomorphism $\varphi':M\to M_2$ given by $\varphi'(f)=\varphi_2(\varphi_1(f))$ can be

• B: non-regular

< 同 > < 三 > < 三 >

Composition of regular homomorphisms - part 2

• Theorem 1:

- $\bullet \ {\rm Let} \ M$ be a map
- Let $\Gamma = \Gamma_1 \times \Gamma_2 \leq Aut(M)$

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ● ● ● ●

Composition of regular homomorphisms - part 2

• Theorem 1:

- $\bullet~$ Let M be a map
- Let $\Gamma = \Gamma_1 \times \Gamma_2 \le Aut(M)$

Then $(M/\Gamma_1)/\Gamma_2 \cong (M/\Gamma_2)/\Gamma_1 \cong M/\Gamma$ and $M \to M/\Gamma$ is a regular map homomorphism

(本語) (本語) (本語) (二語)

Composition of regular homomorphisms - part 2

• Theorem 1:

- Let M be a map
- Let $\Gamma = \Gamma_1 \times \Gamma_2 \le Aut(M)$

Then $(M/\Gamma_1)/\Gamma_2\cong (M/\Gamma_2)/\Gamma_1\cong M/\Gamma$ and $M\to M/\Gamma$ is a regular map homomorphism

- Theorem 2:
 - $\bullet~$ Let M be a map
 - Let $\Gamma = \Gamma_1 \times \Gamma_2$ be a voltage group
 - Let α_1 in Γ_1 , α_2 in Γ_2 and $\alpha = \alpha_1 \times \alpha_2$ in Γ be voltage assignments

(日本) (日本) (日本) 日

Composition of regular homomorphisms - part 2

• Theorem 1:

- Let M be a map
- Let $\Gamma = \Gamma_1 \times \Gamma_2 \le Aut(M)$

Then $(M/\Gamma_1)/\Gamma_2\cong (M/\Gamma_2)/\Gamma_1\cong M/\Gamma$ and $M\to M/\Gamma$ is a regular map homomorphism

- Theorem 2:
 - $\bullet~$ Let M be a map
 - Let $\Gamma = \Gamma_1 \times \Gamma_2$ be a voltage group
 - Let α_1 in Γ_1 , α_2 in Γ_2 and $\alpha = \alpha_1 \times \alpha_2$ in Γ be voltage assignments

Then $(M^{\alpha_1})^{\alpha_2} \cong (M^{\alpha_2})^{\alpha_1} \cong M^{\alpha}$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ● ● ● ●

Tále

An application

u ã., 1

· · · · · ·

GEMS 2009	Tále

