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Abstract

A (face-)primer hypermap is a regular hypermap with no regular
proper quotients with the same number of hyperfaces. Primer
hypermaps are then regular hypermaps whose automorphism group
induce a faithful action on its hyperfaces. This has been important in
the classification of the orientably-regular hypermaps with p (prime)
hyperfaces. In this talk we speak about the classification of primer
hypermaps with p hyperfaces and the role that primer hypermaps have
in the previously mentioned classification.



Connections

Wilson and Breda - Surfaces with no regular hypermaps (Discrete
Math. 277 (2004) 241-274)
(Actions on faces)

Nedela and Breda -Chiral hypermaps with few hyperfaces (Math.
Slovaca, (53) 2003 (2) 107-128)
(Action of the automorphism group on the hyperfaces)

Skoviera - Regular Maps with Multiple Edges (SIGMAC’02)
(Shadow of a map)

S.F. Du, J.H. Kwak and R. Nedela - Regular embeddings of
complete multipartite graphs ( European J. Combin., 26 (2005)
505-519)
(Extension)



Notations

Regular oriented hypermaps

H = (G;a,b)

a permutation cycling darts 1 step CCW about hyperfaces.
a = r0r1 = (RL)−1

b permutation cycling darts 1 step CCW about hypervertices.
a = r1r2 = R

ab permutation cycling darts 1 step CW about hyperedges.
ab = r0r2 = L−1

d

ab

a b



Primer hypermaps

(face - ) Primer hypermap

= regular oriented hypermap with no proper quotients with the
same number of hyperfaces

ρ : ∆+ = 〈a,b〉= C∞ ∗C∞ −→ G = Mon(H ) = 〈a,b〉
a 7−→ a
b 7−→ b

H = Ker(ρ) = hypermap-subgroup of H .

????????????????????
?
?????????.

Chirality group: X(H ) = HH/H , (H = H r0 )



Primer hypermaps

(face - ) Primer hypermap

= regular oriented hypermap with no proper quotients with the
same number of hyperfaces

ρ : ∆+ = 〈a,b〉= C∞ ∗C∞ −→ G = Mon(H ) = 〈a,b〉
a 7−→ a
b 7−→ b

H = Ker(ρ) = hypermap-subgroup of H .

H is primer ⇔ Core
∆+ (〈a〉)⊂ H.

Chirality group: X(H ) = HH/H , (H = H r0 )



The Primer hypermap of H

H not primer ⇒ Core
∆+ (〈a〉) 6⊂ H

⇓
Core

∆+ (〈a〉)H / ∆+  reg. orient. hypermap P (H )

P (H ) is primer = Primer hypermap of H .

If A = permutation of the hyperfaces induced by the
automorphism one step rotation about a hyperface then

Core
∆+ (〈a〉)H = 〈a|A|〉H



How to construct P(H )

H = (G;a,b).

Aut(H ) = 〈φa,φb〉 acts transitively on F (hyperfaces)

φa and φb induces permutations A and B of F .

Then

P(H ) = (P;A−1,B−1), where P = 〈A,B〉.



Proprieties of the primer hypermaps

• # hyperfaces of H = # hyperfaces of P (H )

• P (P (H )) = P (H )

• If Mon(H ) = 〈a,b | R〉 then Mon(P (H )) = 〈a,b | R,a|A|〉
• The chirality group X(P (H )) = X(H )/L

• P (H ) chiral ⇒ H chiral.

• The converse is not true.

If H = metacyclic hypermap M(n,m, r , t);x ,y) chiral and reflexible
( M(n,m, r , t) = 〈x ,y | xn = 1,ym = x r ,xy = x t〉 )
⇒ P (H ) is a spherical hypermap (hence reflexible)
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p-primer groups (p prime)

p-primer hypermap = primer hypermap with p hyperfaces

p-primer group = monodromy group of a p-primer hypermap

Theorem
If P = (P;A,B) is a primer hypermap with p (prime) hyperfaces then
only one of the situations can occur: A = 1 or the support of A is
{2, . . . ,p}. Moreover, the permutation A is either 1, a cycle of length
p−1, or a product of cycles each of length |A|.

Theorem
If P = 〈A,B〉 is a p-primer group then

(1) |P|= |A|p and |A| is a divisor of p−1;

(2) P is a semidirect product 〈A〉n 〈σ〉, where σ is a
permutation of order p, and hence P is a metacyclic
group;

(3) P is primitive.



Before the classification I

• M(p, `,0, t) = 〈x ,y | xp = y` = 1,xy = x t〉= 〈x〉o 〈y〉,
• t` = 1 mod p.

• |y |= ` so M(p, `,0, t) = monodromy group of a primer
hypermap⇒ ` is a divisor of p−1.

• Denote M p,`,t
k := (M(p, `,0, t);y ,xyk ).

• ` = 1⇒ (t = 0) M p,1,0
k = (M(p,1,0,0);1,x) = spherical

dihedral hypermap δp with p hyperfaces. This is clearly primer.



Before the classification II

Theorem
For each k ∈ {0, ..., `−1},

M p,`,t
k = (M(p, `,0, t);y ,xyk )

has p hyperfaces, each of valency `. Moreover,

M p,`,t
k is primer

m

(1) ` is a divisor of p−1

(2) If ` > 1 , t i 6= 1( mod p ) for each i ∈ {1,2, ..., `−1}



Classification of the p-primer hypermaps

Denote by P p,`,t
k the primer hypermap M p,`,t

k before,

where t ∈ {0, ..., p−1} and ` satisfy the two conditions given before.

Theorem
P = primer hypermap with p hyperfaces ⇔ P ∼= P p,`,t

k for some
k ∈ {0, ..., `−1}.
Different parameters `, t and k correspond to non-isomorphic
hypermaps with p hyperfaces of valency `.



Shadow maps versus primer maps

Multiple edges reg. maps  
dual

face multiple edges maps

(incident faces sharing more than 1 edge)

↓ ↓

Shadow map Primer map

↓ (generalises)

primer hypermaps
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