Primer hypermaps and their role in the classification of regular hypermaps with p (prime) hyperfaces

Antonio Breda d'Azevedo (coauthor: Maria Elisa Fernandes)

University of Aveiro

Graph Embeddings and Maps on Surfaces

- コント (母) - (母) - (母) - (母)

Abstract

A (face-)primer hypermap is a regular hypermap with no regular proper quotients with the same number of hyperfaces. Primer hypermaps are then regular hypermaps whose automorphism group induce a faithful action on its hyperfaces. This has been important in the classification of the orientably-regular hypermaps with p (prime) hyperfaces. In this talk we speak about the classification of primer hypermaps with p hyperfaces and the role that primer hypermaps have in the previously mentioned classification.

Connections

Wilson and Breda - Surfaces with no regular hypermaps (Discrete Math. 277 (2004) 241-274) (Actions on faces)

Nedela and Breda -Chiral hypermaps with few hyperfaces (Math. Slovaca, (53) 2003 (2) 107-128) (Action of the automorphism group on the hyperfaces)

Skoviera - Regular Maps with Multiple Edges (SIGMAC'02) (Shadow of a map)

S.F. Du, J.H. Kwak and R. Nedela - Regular embeddings of complete multipartite graphs (European J. Combin., 26 (2005) 505-519) (Extension)

Notations

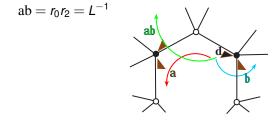
Regular oriented hypermaps

 $\mathcal{H} = (G; a, b)$

a \rightsquigarrow permutation cycling darts 1 step CCW about hyperfaces. a = $r_0 r_1 = (RL)^{-1}$

b \rightsquigarrow permutation cycling darts 1 step CCW about hypervertices. a = $r_1 r_2 = R$

 $ab \rightsquigarrow$ permutation cycling darts 1 step CW about hyperedges.



・ロト ・ 行 ト ・ ヨ ト ・ ヨ ト … ヨ

Primer hypermaps

(face -) Primer hypermap

= regular oriented hypermap with no proper quotients with the same number of hyperfaces

$$\rho: \Delta^{+} = \langle a, b \rangle = C_{\infty} * C_{\infty} \longrightarrow G = Mon(\mathcal{H}) = \langle a, b \rangle$$
$$a \longmapsto a$$
$$b \longmapsto b$$

 $H = Ker(\rho)$ = hypermap-subgroup of \mathcal{H} .

Chirality group: $X(\mathcal{H}) = H\overline{H}/H$, $(\overline{H} = H^{r_0})$

Primer hypermaps

(face -) Primer hypermap

= regular oriented hypermap with no proper quotients with the same number of hyperfaces

$$\rho: \Delta^+ = \langle a, b \rangle = C_{\infty} * C_{\infty} \longrightarrow G = Mon(\mathcal{H}) = \langle a, b \rangle$$
$$a \longmapsto a$$
$$b \longmapsto b$$

 $H = Ker(\rho)$ = hypermap-subgroup of \mathcal{H} .

 $\mathcal{H} ext{ is primer } \Leftrightarrow ext{ Core}_{\Delta^+}(\langle a
angle) \subset \mathcal{H}.$

Chirality group: $X(\mathcal{H}) = H\overline{H}/H$, $(\overline{H} = H^{r_0})$

The Primer hypermap of $\mathcal H$

$$\begin{array}{rcl} \mathcal{H} \text{ not primer } \Rightarrow & \textit{Core}_{\Delta^+}(\langle a \rangle) \not\subset H \\ & & \downarrow \\ \textit{Core}_{\Delta^+}(\langle a \rangle) H \triangleleft \Delta^+ & \rightsquigarrow & \textit{reg. orient. hypermap } \mathcal{P}(\mathcal{H}) \end{array}$$

 $\mathcal{P}(\mathcal{H})$ is primer = Primer hypermap of \mathcal{H} .

If A = permutation of the hyperfaces induced by the automorphism one step rotation about a hyperface then $Core_{\Delta^+}(\langle a \rangle)H = \langle a^{|A|} \rangle H$

How to construct $P(\mathcal{H})$

 $\mathcal{H} = (G; \mathbf{a}, \mathbf{b}).$

 $Aut(\mathcal{H}) = \langle \phi_a, \phi_b \rangle$ acts transitively on \mathcal{F} (hyperfaces)

 ϕ_a and ϕ_b induces permutations *A* and *B* of \mathcal{F} .

Then

 $P(\mathcal{H}) = (P; A^{-1}, B^{-1}), \text{ where } P = \langle A, B \rangle.$

- # hyperfaces of $\mathcal{H} = \#$ hyperfaces of $\mathcal{P}(\mathcal{H})$
- $\mathcal{P}(\mathcal{P}(\mathcal{H})) = \mathcal{P}(\mathcal{H})$
- If $Mon(\mathcal{H}) = \langle a, b \mid R \rangle$ then $Mon(\mathcal{P}(\mathcal{H})) = \langle a, b \mid R, a^{|A|} \rangle$
- The chirality group $X(\mathcal{P}(\mathcal{H})) = X(\mathcal{H})/L$
- $\mathcal{P}(\mathcal{H})$ chiral $\Rightarrow \mathcal{H}$ chiral.
- The converse is not true.

If $\mathcal{H} =$ metacyclic hypermap $M(n, m, r, t); x, y) \rightsquigarrow$ chiral and reflexible ($M(n, m, r, t) = \langle x, y \mid x^n = 1, y^m = x^r, x^y = x^t \rangle$) $\Rightarrow \mathcal{P}(\mathcal{H})$ is a spherical hypermap (hence reflexible)

- # hyperfaces of $\mathcal{H} = \#$ hyperfaces of $\mathcal{P}(\mathcal{H})$
- $\mathcal{P}(\mathcal{P}(\mathcal{H})) = \mathcal{P}(\mathcal{H})$
- If $Mon(\mathcal{H}) = \langle a, b \mid R \rangle$ then $Mon(\mathcal{P}(\mathcal{H})) = \langle a, b \mid R, a^{|A|} \rangle$
- The chirality group $X(\mathcal{P}(\mathcal{H})) = X(\mathcal{H})/L$
- $\mathcal{P}(\mathcal{H})$ chiral $\Rightarrow \mathcal{H}$ chiral.
- The converse is not true.

If $\mathcal{H} =$ metacyclic hypermap $M(n, m, r, t); x, y) \rightsquigarrow$ chiral and reflexible ($M(n, m, r, t) = \langle x, y \mid x^n = 1, y^m = x^r, x^y = x^t \rangle$) $\Rightarrow \mathcal{P}(\mathcal{H})$ is a spherical hypermap (hence reflexible)

- # hyperfaces of $\mathcal{H} = \#$ hyperfaces of $\mathcal{P}(\mathcal{H})$
- $\mathcal{P}(\mathcal{P}(\mathcal{H})) = \mathcal{P}(\mathcal{H})$
- If $Mon(\mathcal{H}) = \langle a, b \mid R \rangle$ then $Mon(\mathcal{P}(\mathcal{H})) = \langle a, b \mid R, a^{|A|} \rangle$
- The chirality group $X(\mathcal{P}(\mathcal{H})) = X(\mathcal{H})/L$
- $\mathcal{P}(\mathcal{H})$ chiral $\Rightarrow \mathcal{H}$ chiral.
- The converse is not true.

If $\mathcal{H} =$ metacyclic hypermap $M(n, m, r, t); x, y) \rightsquigarrow$ chiral and reflexible ($M(n, m, r, t) = \langle x, y \mid x^n = 1, y^m = x^r, x^y = x^t \rangle$) $\Rightarrow \mathcal{P}(\mathcal{H})$ is a spherical hypermap (hence reflexible)

- # hyperfaces of $\mathcal{H} = \#$ hyperfaces of $\mathcal{P}(\mathcal{H})$
- $\mathcal{P}(\mathcal{P}(\mathcal{H})) = \mathcal{P}(\mathcal{H})$
- If $Mon(\mathcal{H}) = \langle a, b \mid R \rangle$ then $Mon(\mathcal{P}(\mathcal{H})) = \langle a, b \mid R, a^{|A|} \rangle$
- The chirality group $X(\mathcal{P}(\mathcal{H})) = X(\mathcal{H})/L$
- $\mathcal{P}(\mathcal{H})$ chiral $\Rightarrow \mathcal{H}$ chiral.
- The converse is not true.

If $\mathcal{H} =$ metacyclic hypermap $M(n, m, r, t); x, y) \rightsquigarrow$ chiral and reflexible ($M(n, m, r, t) = \langle x, y \mid x^n = 1, y^m = x^r, x^y = x^t \rangle$) $\Rightarrow \mathcal{P}(\mathcal{H})$ is a spherical hypermap (hence reflexible)

- # hyperfaces of $\mathcal{H} = \#$ hyperfaces of $\mathcal{P}(\mathcal{H})$
- $\mathcal{P}(\mathcal{P}(\mathcal{H})) = \mathcal{P}(\mathcal{H})$
- If $Mon(\mathcal{H}) = \langle a, b \mid R \rangle$ then $Mon(\mathcal{P}(\mathcal{H})) = \langle a, b \mid R, a^{|A|} \rangle$
- The chirality group $X(\mathcal{P}(\mathcal{H})) = X(\mathcal{H})/L$
- $\mathcal{P}(\mathcal{H})$ chiral $\Rightarrow \mathcal{H}$ chiral.
- The converse is not true.

If $\mathcal{H} =$ metacyclic hypermap $M(n, m, r, t); x, y) \rightsquigarrow$ chiral and reflexible ($M(n, m, r, t) = \langle x, y \mid x^n = 1, y^m = x^r, x^y = x^t \rangle$) $\Rightarrow \mathcal{P}(\mathcal{H})$ is a spherical hypermap (hence reflexible)

- # hyperfaces of $\mathcal{H} = \#$ hyperfaces of $\mathcal{P}(\mathcal{H})$
- $\mathcal{P}(\mathcal{P}(\mathcal{H})) = \mathcal{P}(\mathcal{H})$
- If $Mon(\mathcal{H}) = \langle a, b \mid R \rangle$ then $Mon(\mathcal{P}(\mathcal{H})) = \langle a, b \mid R, a^{|A|} \rangle$
- The chirality group $X(\mathcal{P}(\mathcal{H})) = X(\mathcal{H})/L$
- $\mathcal{P}(\mathcal{H})$ chiral $\Rightarrow \mathcal{H}$ chiral.
- The converse is not true.

If $\mathcal{H} =$ metacyclic hypermap $M(n, m, r, t); x, y) \rightsquigarrow$ chiral and reflexible $(M(n, m, r, t) = \langle x, y \mid x^n = 1, y^m = x^r, x^y = x^t \rangle)$ $\Rightarrow \mathcal{P}(\mathcal{H})$ is a spherical hypermap (hence reflexible)

- # hyperfaces of $\mathcal{H} = \#$ hyperfaces of $\mathcal{P}(\mathcal{H})$
- $\mathcal{P}(\mathcal{P}(\mathcal{H})) = \mathcal{P}(\mathcal{H})$
- If $Mon(\mathcal{H}) = \langle a, b \mid R \rangle$ then $Mon(\mathcal{P}(\mathcal{H})) = \langle a, b \mid R, a^{|A|} \rangle$
- The chirality group $X(\mathcal{P}(\mathcal{H})) = X(\mathcal{H})/L$
- $\mathcal{P}(\mathcal{H})$ chiral $\Rightarrow \mathcal{H}$ chiral.
- The converse is not true.

If $\mathcal{H} =$ metacyclic hypermap $M(n, m, r, t); x, y) \rightsquigarrow$ chiral and reflexible ($M(n, m, r, t) = \langle x, y | x^n = 1, y^m = x^r, x^y = x^t \rangle$) $\Rightarrow \mathcal{P}(\mathcal{H})$ is a spherical hypermap (hence reflexible)

p-primer groups (p prime)

p-primer hypermap = primer hypermap with *p* hyperfaces *p*-primer group = monodromy group of a *p*-primer hypermap

Theorem

If $\mathcal{P} = (P; A, B)$ is a primer hypermap with p (prime) hyperfaces then only one of the situations can occur: A = 1 or the support of A is $\{2, \ldots, p\}$. Moreover, the permutation A is either 1, a cycle of length p-1, or a product of cycles each of length |A|.

Theorem

If $P = \langle A, B \rangle$ is a p-primer group then

(1) |P| = |A|p and |A| is a divisor of p-1;

- (2) P is a semidirect product (A) κ (σ), where σ is a permutation of order p, and hence P is a metacyclic group;
- (3) P is primitive.

Before the classification I

- $M(p,\ell,0,t) = \langle x,y \mid x^p = y^\ell = 1, x^y = x^t \rangle = \langle x \rangle \rtimes \langle y \rangle,$
- $t^{\ell} = 1 \mod p$.
- $|y| = \ell$ so $M(p, \ell, 0, t)$ = monodromy group of a primer hypermap $\Rightarrow \ell$ is a divisor of p 1.
- Denote $\mathcal{M}_k^{p,\ell,t} := (M(p,\ell,0,t); y, xy^k).$
- $\ell = 1 \Rightarrow (t = 0) \ \mathcal{M}_k^{p,1,0} = (M(p,1,0,0);1,x) =$ spherical dihedral hypermap δ_p with *p* hyperfaces. This is clearly primer.

A B > A B > A B >

Before the classification II

Theorem For each $k \in \{0, ..., \ell - 1\}$,

$$\mathcal{M}_{k}^{p,\ell,t} = (M(p,\ell,0,t); y, xy^{k})$$

has p hyperfaces, each of valency ℓ . Moreover,

$$\mathcal{M}_{k}^{p,\ell,t} \text{ is primer}$$

$$(1) \quad \ell \text{ is a divisor of } p-1$$

$$(2) \quad \text{If } \quad \ell > 1 , \quad t^{i} \neq 1 \pmod{p} \text{ for each } i \in \{1, 2, ..., \ell - 1\}$$

э

・ロト ・聞 ト ・ 聞 ト ・ 聞 ト

Classification of the *p*-primer hypermaps

Denote by $\mathcal{P}_{k}^{p,\ell,t}$ the primer hypermap $\mathcal{M}_{k}^{p,\ell,t}$ before,

where $t \in \{0, ..., p-1\}$ and ℓ satisfy the two conditions given before.

Theorem

 $\mathcal{P} = primer hypermap with p hyperfaces \Leftrightarrow \mathcal{P} \cong \mathcal{P}_k^{p,\ell,t}$ for some $k \in \{0, ..., \ell-1\}.$

Different parameters ℓ , t and k correspond to non-isomorphic hypermaps with p hyperfaces of valency ℓ .

Shadow maps versus primer maps

Multiple edges reg. maps dual face multiple edges maps

(incident faces sharing more than 1 edge)

 \downarrow

Shadow map

Primer map

↓ (generalises)

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

primer hypermaps

э

S

S

(日) (四) (日) (日) (日) (日) (日) (日) (日) (日) (日)

٢S

KS

NKS

NKS

NKS

ANKS

ANKS

IANKS

FHANKS

シング 単 ベル・キャイリン・ロット

