History Regular embeddings Hypercubes Admissible involutions Classification

On the classification of regular embeddings of hypercubes

joint work with Marston D.E. Conder, Shao Fei Du, Young Soo Kwon, Roman Nedela and Stephen E. Wilson

GEMS'09

- Nedela and Škoviera:
 - For every solution of the congruence $e^2 \equiv 1 \pmod{n}$ there is a regular embedding of Q_n , with different solutions giving rise to non-isomorphic embeddings.
- ② Du, Kwak and Nedela: There are no other regular embeddings of Q_n into orientable surfaces when n is odd.
- When and Nedela: There are no regular embeddings of Q_n into non-orientable surfaces, for all n > 2.

- Nedela and Škoviera:
 - For every solution of the congruence $e^2 \equiv 1 \pmod{n}$ there is a regular embedding of Q_n , with different solutions giving rise to non-isomorphic embeddings.
- Du, Kwak and Nedela: There are no other regular embeddings of Q_n into orientable surfaces when n is odd.
- When and Nedela: There are no regular embeddings of Q_n into non-orientable surfaces, for all n > 2.

- Nedela and Škoviera:
 - For every solution of the congruence $e^2 \equiv 1 \pmod{n}$ there is a regular embedding of Q_n , with different solutions giving rise to non-isomorphic embeddings.
- Du, Kwak and Nedela: There are no other regular embeddings of Q_n into orientable surfaces when n is odd.
- 3 Kwon and Nedela: There are no regular embeddings of Q_n into non-orientable surfaces, for all n > 2.

- Kwon: Constructed new regular embeddings of Q_n for all even n > 6.
- 2 Jing Xu: Proved that there are no other regular embeddings of Q_{2m} when m is odd.

- Kwon: Constructed new regular embeddings of Q_n for all even n > 6.
- Jing Xu: Proved that there are no other regular embeddings of Q_{2m} when m is odd.

- Kwon: Constructed new regular embeddings of Q_n for all even n > 6.
- Jing Xu: Proved that there are no other regular embeddings of Q_{2m} when m is odd.
- and Nedela:
 Give other regular embeddings of Q_n for all n divisible by
 16.

- G connected simple graph
- ullet S closed (compact and connected) orientable surface.

Definition

An embedding of $\mathcal G$ in $\mathcal S$ is a cellular subdivision $\mathcal M=(V,E,F)$ of $\mathcal S$ such that $(V,E)\cong \mathcal G$. An automorphism of $\mathcal M$ is a self homeomorphisms of $\mathcal S$ preserving $\mathcal G$ and orientation.

$$|Aut(\mathcal{M}) \leqslant Aut(\mathcal{G})|$$
 and $|Aut(\mathcal{M})| \leqslant 2|E|$

Definition

If $|Aut(\mathcal{M})| = 2|E|$ then \mathcal{M} is called (orientably) regular.

$$V=\mathbb{Z}_2^n$$

• Edge set
$$E$$
: $\{u, v\} \in E \Leftrightarrow u + v \in S$

$$(S = \{e_0, ..., e_{n-1}\}$$
 standard basis of \mathbb{Z}_2^n)

$$D = V \times \mathbb{Z}_n \qquad (D = V \times S)$$

$$(D = V \times S)$$

Dart reversing involution

$$L: D \rightarrow D, (v,i) \mapsto (v + e_i, i)$$

Definition

$$Q_n = (V, E)$$

$$Q_n = (V, E)$$
 or $Q_n = (D, V, L)$ or $Q_n = C(V, S)$ or

$$Q_n = \mathcal{C}(V, S)$$

$$Q_n = H(n,2)$$
 or ...

• for
$$a \in V$$
: $(v, i)^a = (v + a, i)$

Translations

• for $\alpha \in S_n = Sym(\mathbb{Z}_n)$: extend $e_i \mapsto e_{i\alpha}$ linearly from S to V and set $(v, i)^{\alpha} = (v^{\alpha}, i^{\alpha})$ **Permutations**

$$Aut(Q_n) = V \times S_n$$
 with $a\alpha = \alpha a^{\alpha}$

$$a\alpha = \alpha a^{\alpha}$$

Remark

$$Aut(Q_n) = \mathbb{Z}_2 \wr S_n$$

$$\rho: \mathbb{Z}_n \to \mathbb{Z}_n, \ i \mapsto i+1.$$

Lemma (Kwon)

For any involution $\sigma \in S_n$ fixing 0 the group $G(\sigma) = \langle e_0 \sigma, \rho \rangle \leqslant Aut(Q_n)$ acts transitively on darts.

Call σ admissible if $G(\sigma)$ acts **regularly** on darts. Then the stabilizer of vertex v=0 is $\langle \rho \rangle$ (cyclic) $\stackrel{\mathsf{GNSS}}{\Rightarrow} G(\sigma) = \mathsf{Aut}(\mathcal{M}(\sigma))$ for some regular embedding $\mathcal{M}(\sigma)$ of Q_0 . Reciprocally,

Theorem (Kwon)

For any regular embedding \mathcal{M} of Q_n there is an admissible involution $\sigma \in S_n$ such that $Aut(\mathcal{M}) = G(\sigma)$. Moreover, $\mathcal{M}(\sigma) \ncong \mathcal{M}(\omega)$ for admissible involutions $\sigma \neq \omega$.

Conclusion

Classification of regular embedding of Q_n

= Classification of admissible involutions $\sigma \in S_n$.

$$\tau: \mathbb{Z}_n \to \mathbb{Z}_n, \ i \mapsto -i$$

Theorem

Let $\sigma \in S_n$ be an involution fixing 0. Then σ is admissible iff

$$\begin{split} \rho^{i}(e_{0}\sigma)\rho^{i^{\sigma\tau}}(e_{0}\sigma)\rho^{i^{(\sigma\tau)^{2}}}(e_{0}\sigma)\rho^{i^{(\sigma\tau)^{3}}}(e_{0}\sigma) &= 1\;,\quad i\in\mathbb{Z}_{n}\setminus\{0\}\\ &\Leftrightarrow \\ \rho^{i}\sigma\rho^{i^{\sigma\tau}}\sigma\rho^{i^{(\sigma\tau)^{2}}}\sigma\rho^{i^{(\sigma\tau)^{3}}}\sigma &= 1\;,\qquad i\in\mathbb{Z}_{n}\setminus\{0\}\;. \end{split} \tag{*}$$

We call (*) quadrilateral identities.

Let *e* be a square root of 1 in \mathbb{Z}_n ($e^2 \equiv 1 \mod n$).

Example (Nedela, Škoviera)

 $\sigma: \mathbb{Z}_n \to \mathbb{Z}_n, \ i \mapsto ei$ is an admissible involution.

Example (Kwon)

 $n=2m,\,A\subseteq\mathbb{Z}_n\setminus\{0\}$ with characteristic function χ_A satisfying

$$\chi_A(ei) = \chi_A(i)$$
 and $\chi_A(i+m) = \chi_A(i)$.

Then $\sigma: \mathbb{Z}_n \to \mathbb{Z}_n$, $i \mapsto ei + m\chi_A(i)$ is an admissible involution (called K-involution).

Let *e* be a square root of 1 in \mathbb{Z}_n ($e^2 \equiv 1 \mod n$).

Example (Nedela, Škoviera)

 $\sigma: \mathbb{Z}_n \to \mathbb{Z}_n, \ i \mapsto ei$ is an admissible involution.

Example (Kwon)

 $n=2m,\,A\subseteq\mathbb{Z}_n\setminus\{0\}$ with characteristic function χ_A satisfying

$$\chi_A(ei) = \chi_A(i)$$
 and $\chi_A(i+m) = \chi_A(i)$.

Then $\sigma: \mathbb{Z}_n \to \mathbb{Z}_n$, $i \mapsto ei + m\chi_A(i)$ is an admissible involution (called K-involution).

Let now n = 2m divisible by 16 and e a square root of 1 + m in \mathbb{Z}_n ($e^2 \equiv 1 + m \mod n$).

Example (- and Nedela)

 $A \subseteq \mathbb{Z}_n \setminus \{0\}$ with characteristic function χ_A satisfying

$$\chi_A(ei) \equiv i + \chi_A(i) \pmod{2}$$
 and $\chi_A(i+m) = \chi_A(i)$.

Then $\sigma: \mathbb{Z}_n \to \mathbb{Z}_n$, $i \mapsto ei + m\chi_A(i)$ is an admissible involution (called CN-involution).

Remark

In case n = 2m we have $\sigma \rho^m = \rho^m \sigma$ in both examples.

Let now n = 2m divisible by 16 and e a square root of 1 + m in \mathbb{Z}_n ($e^2 \equiv 1 + m \mod n$).

Example (- and Nedela)

 $A \subseteq \mathbb{Z}_n \setminus \{0\}$ with characteristic function χ_A satisfying

$$\chi_A(ei) \equiv i + \chi_A(i) \pmod{2}$$
 and $\chi_A(i+m) = \chi_A(i)$.

Then $\sigma: \mathbb{Z}_n \to \mathbb{Z}_n$, $i \mapsto ei + m\chi_A(i)$ is an admissible involution (called CN-involution).

Remark

In case n = 2m we have $\sigma \rho^m = \rho^m \sigma$ in both examples.

Theorem

 $\sigma \rho^m = \rho^m \sigma$ for any admissible involution $\sigma \in S_{2m}$.

 $\langle \sigma, \rho \rangle$ is a permutation group of degree 2*m* containing a regular element ρ such that point-stabilizers are 2-groups.

$$\Rightarrow \left| \{i, i+m\}^{\sigma} = \{i^{\sigma}, i^{\sigma} + m\} \right|$$

Corollary (Projection)

For any admissible involution $\sigma \in S_{2m}$

$$\overline{\sigma}: \mathbb{Z}_m \to \mathbb{Z}_m, \ i \mapsto i^{\sigma} \ (mod \ m)$$

is an admissible involution in S_m .

Definition

An admissible involution $\sigma \in S_{2m}$ is called a lift of the admissible involution $\omega \in S_m$ if $\overline{\sigma} = \omega$.

We have seen: Every admissible involution $\sigma \in S_{2m}$ is a lift of some admissible involution $\omega \in S_m$ (namely $\omega = \overline{\sigma}$). If m is odd then σ is a K-involution (Jing Xu). Hence we may assume m = 2k. Let $\sigma \in S_{2m}$ be a lift of

$$\omega: \mathbb{Z}_m \to \mathbb{Z}_m, \ i \mapsto ei + k\chi_A(i)$$
 K- or CN-involution.

Then $\sigma: \mathbb{Z}_{2m} \to \mathbb{Z}_{2m}, \ i \mapsto ei + k\psi(i)$ for some $\psi: \mathbb{Z}_{2m} \to \mathbb{Z}_4$ satisfying the lifting conditions:

- \bullet $\overline{\sigma} = \omega$ (\Leftrightarrow conditions on ψ)
- ② σ is an involution fixing 0 (\Leftrightarrow conditions on ψ).
- **3** σ satisfies the quadrilateral identities (\Leftrightarrow conditions on ψ).

Theorem

$$\psi(i+j) \equiv \psi(i) + \psi(j) \mod 2.$$

$$\Leftrightarrow (i+j)^{\sigma} \equiv i^{\sigma} + j^{\sigma} \bmod m$$

 $\Leftrightarrow \sigma$ is a K- or CN-involution.

Bibliography

R. Nedela and M. Škoviera.

Regular maps from voltage assignments and exponent groups.

Europ. J. Combin. 18 (1997), 807-823.

Y. S. Kwon.

New regular embeddings of n-cubes Q_n .

J. Graph Theory 46 (2004), 297–312.

Y. S. Kwon and R. Nedela.

Non-existence of nonorientable regular embeddings of n-dimensional cubes.

Discrete Mathematics 307 (2007), 511–516.

Bibliography

S. F. Du. J. H. Kwak and R. Nedela.

Classification of regular embeddings of hypercubes of odd dimension.

Discrete Math. 307 (2007), 119-124.

J. Xu.

A classification of regular embeddings of hypercubes Q_{2m} with m odd.

Science in China Ser. A: Mathematics 50 (2007), 1673–1679.

D. A. Catalano and R. Nedela.

A charaterization of regular embeddings of n-dimensional cubes.

submitted.

