Looseness of Plane Graphs

Július Czap

Institute of Mathematics Faculty of Science Pavol Jozef Šafárik University in Košice Slovakia

joint work with Stanislav Jendrol, František Kardoš and Jozef Miškuf

J. Czap (UPJŠ)

Looseness of Plane Graphs

্≣ ▶ ≣ ৩৭৫ GEMS'09 1/14

化白色 化塑料 化医医水理学

- Let G = (V, E, F) be a connected plane graph with the vertex set V, the edge set E and the face set F.
- A *k*-colouring of a graph *G* is a mapping $\varphi : V(G) \rightarrow \{1, \ldots, k\}$.
- Let φ(f) denote the set of colours used on the vertices incident with the face f.
- A face $f \in F$ is called loose if $|\varphi(f)| \geq 3$.
- A k-colouring of a graph G is called the loose k-colouring if G contains a loose face.

- Let G = (V, E, F) be a connected plane graph with the vertex set V, the edge set E and the face set F.
- A *k*-colouring of a graph *G* is a mapping $\varphi : V(G) \rightarrow \{1, \ldots, k\}$.
- Let φ(f) denote the set of colours used on the vertices incident with the face f.
- A face $f \in F$ is called loose if $|\varphi(f)| \ge 3$.
- A k-colouring of a graph G is called the loose k-colouring if G contains a loose face.

化白豆 化间面 化医原油 医原生素

- Let G = (V, E, F) be a connected plane graph with the vertex set V, the edge set E and the face set F.
- A *k*-colouring of a graph *G* is a mapping $\varphi : V(G) \rightarrow \{1, \ldots, k\}$.
- Let φ(f) denote the set of colours used on the vertices incident with the face f.
- A face $f \in F$ is called loose if $|\varphi(f)| \ge 3$.
- A *k*-colouring of a graph *G* is called the loose *k*-colouring if *G* contains a loose face.

<ロト < 同ト < 回ト < 回ト = 三日

- Let G = (V, E, F) be a connected plane graph with the vertex set V, the edge set E and the face set F.
- A *k*-colouring of a graph *G* is a mapping $\varphi : V(G) \rightarrow \{1, \ldots, k\}$.
- Let φ(f) denote the set of colours used on the vertices incident with the face f.
- A face $f \in F$ is called loose if $|\varphi(f)| \ge 3$.
- A *k*-colouring of a graph *G* is called the loose *k*-colouring if *G* contains a loose face.

化白豆 化硼医化合医医化合医医二乙基

- Let G = (V, E, F) be a connected plane graph with the vertex set V, the edge set E and the face set F.
- A *k*-colouring of a graph *G* is a mapping $\varphi : V(G) \rightarrow \{1, \ldots, k\}$.
- Let φ(f) denote the set of colours used on the vertices incident with the face f.
- A face $f \in F$ is called loose if $|\varphi(f)| \geq 3$.
- A *k*-colouring of a graph *G* is called the loose *k*-colouring if *G* contains a loose face.

Question

What is the minimum number of colours ls(G) that any surjective vertex colouring of a connected plane graph *G* with ls(G) colours enforces a loose face?

ls(*G*) – the looseness of *G*

<ロト < 同ト < 回ト < 回ト = 三日

Question

What is the minimum number of colours ls(G) that any surjective vertex colouring of a connected plane graph *G* with ls(G) colours enforces a loose face?

ls(G) – the looseness of G

化白豆 化硼医化合医医化合医医二乙基

Let G = (V, E, F) be a connected plane graph such that the dual G^* of G has t vertex disjoint cycles. Then

$ls(G) \ge t+2$.

Proof:

- $C = \{C_1, \ldots, C_t\}$ disjoint cycles in G^* .
- We write $C_i \leq C_j$ if C_i is inside C_j .
- We can assume that the cycles in C are indexed in such a way that $C_i \leq C_j$ implies $i \leq j$.
- **b** Let D_i be the inner part of G_i .

Let G = (V, E, F) be a connected plane graph such that the dual G^* of G has t vertex disjoint cycles. Then

$ls(G) \ge t+2$.

Proof:

•
$$C = \{C_1, \ldots, C_t\}$$
 disjoint cycles in G^* .

• We write $C_i \leq C_j$ if C_i is inside C_j .

• We can assume that the cycles in *C* are indexed in such a way that $C_i \leq C_j$ implies $i \leq j$.

b. Let D_i be the inner part of $C_{i..}$

J. Czap (UPJŠ)

Let G = (V, E, F) be a connected plane graph such that the dual G^* of G has t vertex disjoint cycles. Then

$ls(G) \ge t+2$.

Proof:

- $C = \{C_1, \ldots, C_t\}$ disjoint cycles in G^* .
- We write $C_i \leq C_j$ if C_i is inside C_j .

• We can assume that the cycles in C are indexed in such a way that $C_i \leq C_j$ implies $i \leq j$.

• Let D_i be the inner part of C_i .

Let G = (V, E, F) be a connected plane graph such that the dual G^* of G has t vertex disjoint cycles. Then

$ls(G) \ge t+2$.

Proof:

- $C = \{C_1, \ldots, C_t\}$ disjoint cycles in G^* .
- We write $C_i \leq C_j$ if C_i is inside C_j .
- We can assume that the cycles in C are indexed in such a way that C_i ≤ C_j implies i ≤ j.
- Let D_i be the inner part of C_i.

Let G = (V, E, F) be a connected plane graph such that the dual G^* of G has t vertex disjoint cycles. Then

$ls(G) \ge t+2$.

Proof:

- $C = \{C_1, \ldots, C_t\}$ disjoint cycles in G^* .
- We write $C_i \leq C_j$ if C_i is inside C_j .
- We can assume that the cycles in C are indexed in such a way that C_i ≤ C_j implies i ≤ j.
- Let D_i be the inner part of C_i .

イロト イポト イラト イラト 一日

- Faces of G^* contained in $D_i \setminus \bigcup_{s=1}^{i} D_s$ receive the colour *i*; faces not contained in any D_i receive the colour t + 1.
- The faces inside *C_i* (the faces forming *D_i*) received the colours at most *i*.
- Let us suppose for a contradiction that the graph *G* contains a face *f* which is incident with three vertices v_i , v_j , v_k having three different colours $1 \le i < j < k \le t + 1$.
- These correspond to three faces v_i^{*}, v_j^{*}, v_k^{*} of G^{*} coloured i, j, k, all incident with a vertex f^{*}.

- Faces of G^* contained in $D_i \setminus \bigcup_{s=1}^{i} D_s$ receive the colour *i*; faces not contained in any D_i receive the colour t + 1.
- The faces inside *C_i* (the faces forming *D_i*) received the colours at most *i*.
- Let us suppose for a contradiction that the graph *G* contains a face *f* which is incident with three vertices v_i , v_j , v_k having three different colours $1 \le i < j < k \le t + 1$.
- These correspond to three faces v_i^{*}, v_j^{*}, v_k^{*} of G^{*} coloured i, j, k, all incident with a vertex f^{*}.

イロン 不得 とくほ とくほ とうほ

- Faces of G^* contained in $D_i \setminus \bigcup_{s=1}^{i-1} D_s$ receive the colour *i*; faces not contained in any D_i receive the colour t + 1.
- The faces inside *C_i* (the faces forming *D_i*) received the colours at most *i*.
- Let us suppose for a contradiction that the graph *G* contains a face *f* which is incident with three vertices *v_i*, *v_j*, *v_k* having three different colours 1 ≤ *i* < *j* < *k* ≤ *t* + 1.

• These correspond to three faces v_i^* , v_j^* , v_k^* of G^* coloured i, j, k, all incident with a vertex f^* .

イロン 不得 とくほ とくほ とうほ

- Faces of G^* contained in $D_i \setminus \bigcup_{s=1}^{i-1} D_s$ receive the colour *i*; faces not contained in any D_i receive the colour t + 1.
- The faces inside *C_i* (the faces forming *D_i*) received the colours at most *i*.
- Let us suppose for a contradiction that the graph *G* contains a face *f* which is incident with three vertices *v_i*, *v_j*, *v_k* having three different colours 1 ≤ *i* < *j* < *k* ≤ *t* + 1.
- These correspond to three faces v_i^* , v_j^* , v_k^* of G^* coloured i, j, k, all incident with a vertex f^* .

<ロト < 同ト < 回ト < 回ト = 三日

- Since the face v_i^{*} has colour i, v_i^{*} ⊆ D_i. On the other hand, the face v_i^{*} has colour j > i, therefore v_i^{*} is not inside C_i.
- The vertex *f*^{*} is incident both with a face inside and outside *C_i*, hence *f*^{*} ∈ *C_i*.
- Analogously, v^{*}_j is inside C_j, v^{*}_k is outside C_j, hence f^{*} ∈ C_j. The vertex f^{*} lies on two vertex disjoint cycles, a contradiction.

- Since the face v_i^{*} has colour i, v_i^{*} ⊆ D_i. On the other hand, the face v_i^{*} has colour j > i, therefore v_i^{*} is not inside C_i.
- The vertex *f*^{*} is incident both with a face inside and outside *C_i*, hence *f*^{*} ∈ *C_i*.
- Analogously, v^{*}_j is inside C_j, v^{*}_k is outside C_j, hence f^{*} ∈ C_j. The vertex f^{*} lies on two vertex disjoint cycles, a contradiction.

イロン 不得 とくほ とくほ とうほう

- Since the face v_i^{*} has colour i, v_i^{*} ⊆ D_i. On the other hand, the face v_i^{*} has colour j > i, therefore v_i^{*} is not inside C_i.
- The vertex *f*^{*} is incident both with a face inside and outside *C_i*, hence *f*^{*} ∈ *C_i*.
- Analogously, v^{*}_j is inside C_j, v^{*}_k is outside C_j, hence f^{*} ∈ C_j. The vertex f^{*} lies on two vertex disjoint cycles, a contradiction.

Let G = (V, E, F) be a connected plane graph and let G^* be its dual. Then there are t_0 vertex disjoint cycles in G^* such that

 $ls(G) = t_0 + 2$.

Proof:

• Let φ be a nonloose *k*-colouring of the graph *G*, such that k = ls(G) - 1.

E_{ij} ...the set of two coloured edges of *G*, *i* ≠ *j*, *E^{*}_{ij}* corresponding edges of *G^{*}*.

 G^{*}[E^{*}_i] has minimum degree at least two, hence it contains at least one cycle, say G_i.

<ロト < 同ト < 回ト < 回ト = 三日

Let G = (V, E, F) be a connected plane graph and let G^* be its dual. Then there are t_0 vertex disjoint cycles in G^* such that

 $ls(G) = t_0 + 2$.

Proof:

- Let φ be a nonloose *k*-colouring of the graph *G*, such that k = ls(G) 1.
- *E_{ij}* ...the set of two coloured edges of *G*, *i* ≠ *j*, *E^{*}_{ij}* corresponding edges of *G^{*}*.
- G^{*}[E^{*}_{ij}] has minimum degree at least two, hence it contains at least one cycle, say C_{ij}.

J. Czap (UPJŠ)

<ロト < 同ト < 回ト < 回ト = 三日

Let G = (V, E, F) be a connected plane graph and let G^* be its dual. Then there are t_0 vertex disjoint cycles in G^* such that

 $ls(G) = t_0 + 2$.

Proof:

- Let φ be a nonloose *k*-colouring of the graph *G*, such that k = ls(G) 1.
- *E_{ij}* ...the set of two coloured edges of *G*, *i* ≠ *j*, *E^{*}_{ij}* corresponding edges of *G*^{*}.

 G^{*}[E^{*}_{ij}] has minimum degree at least two, hence it contains at least one cycle, say C_{ij}.

J. Czap (UPJŠ)

化白豆 化间面 化医原油 医原生素

Let G = (V, E, F) be a connected plane graph and let G^* be its dual. Then there are t_0 vertex disjoint cycles in G^* such that

 $ls(G) = t_0 + 2$.

Proof:

- Let φ be a nonloose *k*-colouring of the graph *G*, such that k = ls(G) 1.
- *E_{ij}* ...the set of two coloured edges of *G*, *i* ≠ *j*, *E^{*}_{ij}* corresponding edges of *G*^{*}.
- G^{*}[E^{*}_{ij}] has minimum degree at least two, hence it contains at least one cycle, say C_{ij}.

J. Czap (UPJŠ)

化白豆 化间面 化医原油 医原生素

• $G^*[E_{ij}^*] \cap G^*[E_{lk}^*] = \emptyset$ for $\{i, j\} \neq \{k, l\}$.

• C_{ij} and C_{kl} are vertex disjoint for $\{i, j\} \neq \{k, l\}$.

• Let t_0 denote the number of such cycles. We know that $ls(G) \ge t_0 + 2$.

 φ uses k colours, therefore the graph G has at least k − 1 types of heterochromatic edges. Hence, t₀ ≥ k − 1 = ls(G) − 2.

(日)

•
$$G^*[E_{ij}^*] \cap G^*[E_{lk}^*] = \emptyset$$
 for $\{i, j\} \neq \{k, l\}$.

- C_{ij} and C_{kl} are vertex disjoint for $\{i, j\} \neq \{k, l\}$.
- Let t_0 denote the number of such cycles. We know that $ls(G) \ge t_0 + 2$.
- φ uses k colours, therefore the graph G has at least k − 1 types of heterochromatic edges. Hence, t₀ ≥ k − 1 = ls(G) − 2.

(日)

•
$$G^*[E^*_{ij}] \cap G^*[E^*_{lk}] = \emptyset$$
 for $\{i, j\} \neq \{k, l\}$.

- C_{ij} and C_{kl} are vertex disjoint for $\{i, j\} \neq \{k, l\}$.
- Let t_0 denote the number of such cycles. We know that $ls(G) \ge t_0 + 2$.
- φ uses k colours, therefore the graph G has at least k − 1 types of heterochromatic edges. Hence, t₀ ≥ k − 1 = ls(G) − 2.

化白豆 化间面 化医原油 医原生素

•
$$G^*[E_{ij}^*] \cap G^*[E_{lk}^*] = \emptyset$$
 for $\{i, j\} \neq \{k, l\}$.

- C_{ij} and C_{kl} are vertex disjoint for $\{i, j\} \neq \{k, l\}$.
- Let t_0 denote the number of such cycles. We know that $ls(G) \ge t_0 + 2$.
- φ uses k colours, therefore the graph G has at least k − 1 types of heterochromatic edges. Hence, t₀ ≥ k − 1 = ls(G) − 2.

化白豆 化间面 化医原油 医原生素

Let G = (V, E, F) be a connected plane graph such that the dual G^* of G has t vertex disjoint cycles. Then

 $ls(G) \ge t + 2$.

Theorem 2

Let G = (V, E, F) be a connected plane graph and let G^* be its dual. Then there are t_0 vertex disjoint cycles in G^* such that

 $ls(G) = t_0 + 2$.

The looseness of a connected plane graph G equals 2 plus the maximum number of vertex disjoint cycles in the dual graph G^* .

J. Czap (UPJŠ)

Looseness of Plane Graphs

GEMS'09 9 / 14

イロト 不得 トイヨト イヨト 三日

Let G = (V, E, F) be a connected plane graph such that the dual G^* of G has t vertex disjoint cycles. Then

 $ls(G) \ge t+2$.

Theorem 2

Let G = (V, E, F) be a connected plane graph and let G^* be its dual. Then there are t_0 vertex disjoint cycles in G^* such that

 $ls(G) = t_0 + 2$.

The looseness of a connected plane graph G equals 2 plus the maximum number of vertex disjoint cycles in the dual graph G^* .

J. Czap (UPJŠ)

Looseness of Plane Graphs

GEMS'09 9 / 14

化白豆 化间面 化医原油 医原生素

The girth of a graph G is the length of its shortest cycle.

Theorem

Let G = (V, E, F) be a connected plane graph, let g be the girth of the dual graph G^* of G. Then

$$ls(G) \leq rac{1}{g}|F(G)|+2$$
 .

Moreover, the bound is sharp.

The dual graph G^* of a graph G contains t vertex disjoint cycles such that ls(G) = t + 2. Clearly, each cycle contains at least g vertices. Hence, we get $t \leq \frac{|F(G)|}{g}$.

J. Czap (UPJŠ)

Looseness of Plane Graphs

GEMS'09 10 / 14

化白豆 化硼医化合医医化合医医二乙基

The girth of a graph G is the length of its shortest cycle.

Theorem

Let G = (V, E, F) be a connected plane graph, let g be the girth of the dual graph G^* of G. Then

$$Vs(G) \leq rac{1}{g}|F(G)|+2$$

Moreover, the bound is sharp.

The dual graph G^* of a graph G contains t vertex disjoint cycles such that ls(G) = t + 2. Clearly, each cycle contains at least g vertices. Hence, we get $t \leq \frac{|F(G)|}{g}$.

J. Czap (UPJŠ)

Looseness of Plane Graphs

GEMS'09 10 / 14

化白豆 化硼医化合医医化合医医二乙基

The girth of a graph G is the length of its shortest cycle.

Theorem

Let G = (V, E, F) be a connected plane graph, let g be the girth of the dual graph G^* of G. Then

$$Vs(G) \leq rac{1}{g}|F(G)|+2$$

Moreover, the bound is sharp.

The dual graph G^* of a graph G contains t vertex disjoint cycles such that ls(G) = t + 2. Clearly, each cycle contains at least g vertices. Hence, we get $t \leq \frac{|F(G)|}{g}$.

GEMS'09

10/14

Each minimum edge-cut of size g in G corresponds to a cycle in G^* and vice versa, therefore, the edge connectivity of a graph G is equal to the girth of the dual graph G^* .

Theorem

Let G = (V, E, F) be a connected plane graph with the edge connectivity κ' . Then

$$|s(G) \leq rac{1}{\kappa'}|F(G)|+2$$
 .

Moreover, the bound is sharp.

J. Czap (UPJŠ)

Looseness of Plane Graphs

化白豆 化间面 化医原油 医原生素

GEMS'09

11/14

Each minimum edge-cut of size g in G corresponds to a cycle in G^* and vice versa, therefore, the edge connectivity of a graph G is equal to the girth of the dual graph G^* .

Theorem

Let G = (V, E, F) be a connected plane graph with the edge connectivity κ' . Then

$$ls(G) \leq rac{1}{\kappa'} |F(G)| + 2$$

Moreover, the bound is sharp.

J. Czap (UPJŠ)

Looseness of Plane Graphs

イロン 不得い イラン イラン 一戸

GEMS'09

11/14

Observation

Let *G* be a plane graph on *n* vertices which contains a face incident with at least three vertices. Then $ls(G) \le n$.

<ロト < 同ト < 回ト < 回ト = 三日

Let G be a connected simple plane graph on n vertices. Then

 $ls(G) \leq \frac{2n+2}{3}.$

Theorem

For any integer $t \ge 1$ and any $k \in \{1, 2, 3\}$ there exists a simple k-connected plane graph G on n vertices, $n \ge t$, such that

$$ls(G)=\frac{2n+2}{3}.$$

J. Czap (UPJŠ)

Looseness of Plane Graphs

GEMS'09 13 / 14

Let *G* be a connected simple plane graph on *n* vertices. Then

$$ls(G) \leq \frac{2n+2}{3}$$

Theorem

For any integer $t \ge 1$ and any $k \in \{1, 2, 3\}$ there exists a simple *k*-connected plane graph *G* on *n* vertices, $n \ge t$, such that

$$ls(G)=\frac{2n+2}{3}.$$

J. Czap (UPJŠ)

Looseness of Plane Graphs

GEMS'09 13 / 14

THANK YOU !

J. Czap (UPJŠ)

Looseness of Plane Graphs

GEMS'09 14 / 14

:)

http://umv.science.upjs.sk/preprints/dokumenty/A3-2009.pdf

J. Czap (UPJŠ)

Looseness of Plane Graphs

GEMS'09 15 / 14