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Slovakia

joint work with
Stanislav Jendrol’, František Kardoš and Jozef Miškuf
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Introduction

Let G = (V ,E ,F ) be a connected plane graph with the vertex set
V , the edge set E and the face set F .

A k-colouring of a graph G is a mapping ϕ : V (G)→ {1, . . . , k}.

Let ϕ(f ) denote the set of colours used on the vertices incident
with the face f .

A face f ∈ F is called loose if |ϕ(f )| ≥ 3.

A k-colouring of a graph G is called the loose k-colouring if G
contains a loose face.
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J. Czap (UPJŠ) Looseness of Plane Graphs GEMS’09 2 / 14



Introduction

Let G = (V ,E ,F ) be a connected plane graph with the vertex set
V , the edge set E and the face set F .

A k-colouring of a graph G is a mapping ϕ : V (G)→ {1, . . . , k}.

Let ϕ(f ) denote the set of colours used on the vertices incident
with the face f .

A face f ∈ F is called loose if |ϕ(f )| ≥ 3.

A k-colouring of a graph G is called the loose k-colouring if G
contains a loose face.
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Problem

Question
What is the minimum number of colours ls(G) that any surjective
vertex colouring of a connected plane graph G with ls(G) colours
enforces a loose face?

ls(G) – the looseness of G
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General properties of the loose colourings

Theorem 1
Let G = (V ,E ,F ) be a connected plane graph such that the dual G∗ of
G has t vertex disjoint cycles. Then

ls(G) ≥ t + 2 .

Proof:

C = {C1, . . . ,Ct} disjoint cycles in G∗.

We write Ci � Cj if Ci is inside Cj .

We can assume that the cycles in C are indexed in such a way
that Ci � Cj implies i ≤ j .

Let Di be the inner part of Ci .
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General properties of the loose colourings

Faces of G∗ contained in Di \
i−1⋃
s=1

Ds receive the colour i; faces not

contained in any Di receive the colour t + 1.

The faces inside Ci (the faces forming Di ) received the colours at
most i.

Let us suppose for a contradiction that the graph G contains a
face f which is incident with three vertices vi , vj , vk having three
different colours 1 ≤ i < j < k ≤ t + 1.

These correspond to three faces v∗i , v∗j , v
∗
k of G∗ coloured i, j , k , all

incident with a vertex f ∗.
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General properties of the loose colourings

Since the face v∗i has colour i, v∗i ⊆ Di . On the other hand, the
face v∗j has colour j > i, therefore v∗j is not inside Ci .

The vertex f ∗ is incident both with a face inside and outside Ci ,
hence f ∗ ∈ Ci .

Analogously, v∗j is inside Cj , v∗k is outside Cj , hence f ∗ ∈ Cj . The
vertex f ∗ lies on two vertex disjoint cycles, a contradiction.
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General properties of the loose colourings

Theorem 2
Let G = (V ,E ,F ) be a connected plane graph and let G∗ be its dual.
Then there are t0 vertex disjoint cycles in G∗ such that

ls(G) = t0 + 2 .

Proof:

Let ϕ be a nonloose k-colouring of the graph G, such that
k = ls(G)− 1.

Eij ...the set of two coloured edges of G, i 6= j , E∗ij corresponding
edges of G∗.

G∗[E∗ij ] has minimum degree at least two, hence it contains at
least one cycle, say Cij .
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General properties of the loose colourings

G∗[E∗ij ] ∩G∗[E∗lk ] = ∅ for {i, j} 6= {k , l}.

Cij and Ckl are vertex disjoint for {i, j} 6= {k , l}.

Let t0 denote the number of such cycles. We know that
ls(G) ≥ t0 + 2.

ϕ uses k colours, therefore the graph G has at least k − 1 types of
heterochromatic edges. Hence, t0 ≥ k − 1 = ls(G)− 2.
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General properties of the loose colourings

Theorem 1
Let G = (V ,E ,F ) be a connected plane graph such that the dual G∗ of
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Theorem 2
Let G = (V ,E ,F ) be a connected plane graph and let G∗ be its dual.
Then there are t0 vertex disjoint cycles in G∗ such that

ls(G) = t0 + 2 .

The looseness of a connected plane graph G equals 2 plus the
maximum number of vertex disjoint cycles in the dual graph G∗.
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J. Czap (UPJŠ) Looseness of Plane Graphs GEMS’09 9 / 14



Looseness, girth and edge-connectivity

The girth of a graph G is the length of its shortest cycle.

Theorem
Let G = (V ,E ,F ) be a connected plane graph, let g be the girth of the
dual graph G∗ of G. Then

ls(G) ≤ 1
g
|F (G)|+ 2 .

Moreover, the bound is sharp.

The dual graph G∗ of a graph G contains t vertex disjoint cycles such
that ls(G) = t + 2. Clearly, each cycle contains at least g vertices.
Hence, we get t ≤ |F(G)|

g .
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Looseness, girth and edge-connectivity

Each minimum edge-cut of size g in G corresponds to a cycle in G∗

and vice versa, therefore, the edge connectivity of a graph G is equal
to the girth of the dual graph G∗.

Theorem
Let G = (V ,E ,F ) be a connected plane graph with the edge
connectivity κ′. Then

ls(G) ≤ 1
κ′
|F (G)|+ 2 .

Moreover, the bound is sharp.

J. Czap (UPJŠ) Looseness of Plane Graphs GEMS’09 11 / 14



Looseness, girth and edge-connectivity

Each minimum edge-cut of size g in G corresponds to a cycle in G∗

and vice versa, therefore, the edge connectivity of a graph G is equal
to the girth of the dual graph G∗.

Theorem
Let G = (V ,E ,F ) be a connected plane graph with the edge
connectivity κ′. Then

ls(G) ≤ 1
κ′
|F (G)|+ 2 .

Moreover, the bound is sharp.
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Looseness and number of vertices

Observation
Let G be a plane graph on n vertices which contains a face incident
with at least three vertices. Then ls(G) ≤ n.
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Looseness and number of vertices

Theorem
Let G be a connected simple plane graph on n vertices. Then

ls(G) ≤ 2n + 2
3

.

Theorem
For any integer t ≥ 1 and any k ∈ {1,2,3} there exists a simple
k-connected plane graph G on n vertices, n ≥ t , such that

ls(G) =
2n + 2

3
.
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THANK YOU !
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http://umv.science.upjs.sk/preprints/dokumenty/A3-2009.pdf
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