Regular Embeddings of Graphs of Order pq

Shao-Fei Du

School of Mathematical Sciences Capital Normal University Beijing 100048, P. R. China

Joint work with Jinho Kwak, Roman Nedela and Furong Wang

The Fifth Workshop Graph Embeddings and Maps on Surfaces

Tale, Low Tatras, Slovakia, June, 28th - July 3rd 2009

A map is called *regular* if its automorphism group acts regularly on the set of all flags (incident vertex-edge-face triples). An orientable map is called *orientably-regular* if the group of all orientation-preserving automorphisms is regular on the set of all arcs (incident vertex-edge pairs). If an orientably-regular map admits also orientation-reversing automorphisms, then it is regular, and called *reflexible*. A *regular embedding* and *orientably-regular embedding* of a graph \mathcal{G} are respectively a 2-cell embeddings of \mathcal{G} as a regular map and orientably-regular map on some closed surface.

.

In this talk, we shall give a classification of orientablyregular and regular embeddings of graphs of order pq, where p and q are primes.

1. Surfaces and Embeddings

2-manifold M: a topological space M which is Hausdorf and is covered by countably many open sets isomorphic to either 2-dim open ball or 2-dim half-ball;

Closed 2-manifold M: compact, boundary is empty;

Surface S: closed, connected 2-manifold;

Classification of Surfaces:

(i) Orientable Surfaces: $S_g, g = 0, 1, 2, \cdots$,

v + f - e = 2 - 2g

(ii) Nonorientable Surfaces: $N_k, k = 0, 1, 2, \cdots, v + f - e = 2 - k$

Embeddings of a graph X in the surface is a continuous one-to-one function $i: X \to S$.

2-cell Embeddings: each region is homemorphic to an open disk.

The primitive objective of topological graph theory is to draw a graph on a surface so that no two edges cross.

Topological Map \mathcal{M} : a 2-cell embedding of a graph into a surface. The embedded graph X is called the *underlying graph* of the map.

Automorphism of a map \mathcal{M} : an automorphism of the underlying graph X which can be extended to self-homeomorphism of the surface.

Automorphism group $\operatorname{Aut}(\mathcal{M})$: all the automorphisms of the map \mathcal{M} .

Remark: Aut (\mathcal{M}) acts semi-regularly on the flags of X.

Regular Map: Aut (\mathcal{M}) acts regularly on the flags (incident vertex-edge-face triples).

Orientably-Regular Map: map is orientable and the group of all orientation-preserving automorphisms is regular on the arcs (incident vertex-edge pairs).

Reflexible Map: Orientably-regular and regular.

Chiral Map: Orientably-Regular Map but not regular.

Three main research directions:

- 1. Classifying regular maps by groups;
- 2. Classifying regular maps by underlying graphs
- 3. Classifying regular maps by genus

2. Combinatorial and Algebraic Map

Combinatorial Orientably-Regular Map:

connected simple graph $\mathcal{G} = \mathcal{G}(V, D)$, with vertex set $V = V(\mathcal{G})$, dart (arc) set $D = D(\mathcal{G})$.

arc-reversing involution L: interchanging the two arcs underlying every given edge.

rotation R: cyclically permutes the arcs initiated at v for each vertex $v \in V(\mathcal{G})$.

Map \mathcal{M} with underlying graph \mathcal{G} : the triple $\mathcal{M} = \mathcal{M}(\mathcal{G}; R, L)$.

Remarks: Monodromy group $Mon(\mathcal{M}) := \langle R, L \rangle$ acts transitively on D.

Given two maps

$$\mathcal{M}_1 = \mathcal{M}(\mathcal{G}_1; R_1, L_1), \ \mathcal{M}_2 = \mathcal{M}(\mathcal{G}_2; R_2 L_2),$$

Map (orientation persevering) isomorphism: bijection $\phi: D(\mathcal{G}_1) \to D(\mathcal{G}_2)$ such that

$$L_1\phi = \phi L_2, R_1\phi = \phi R_2$$

Automorphism ϕ of \mathcal{M} : if $\mathcal{M}_1 = \mathcal{M}_2 = \mathcal{M}$; Automorphism group: Aut (\mathcal{M}) Remarks: Aut $(\mathcal{M}) = C_{S_D}(\operatorname{Mon}(\mathcal{M}));$ Aut (\mathcal{M}) acts semi-regularly on D,

Orientably-Regular Map: Aut (\mathcal{M}) acts regularly on D.

For an orientably-regular map, we have

(i) $\operatorname{Aut}(\mathcal{M}) \cong \operatorname{Mon}(\mathcal{M});$

(ii) Aut (\mathcal{M}) and Mon (\mathcal{M}) on D can be viewed as the right and the left regular representations of an abstract group $G = \operatorname{Aut}(\mathcal{M}) \cong \operatorname{Mon}(\mathcal{M})$

Algebraic Orientably-Regular Map:

Given an orientably-regular map \mathcal{M} with $\operatorname{Aut}(\mathcal{M}) \cong G$, we may represent it by an *algebraic map* $\mathcal{M}(G; r, l)$, where |l| = 2.

(i) $\mathcal{M}(G; r_1, \ell_1) \cong \mathcal{M}(G; r_2, \ell_2)$ if and only if there exists an element $\sigma \in \operatorname{Aut}(G)$ such that $r_1^{\sigma} = r_2$ and $\ell_1^{\sigma} = \ell_2$.

(ii) $\mathcal{M}(G; r, \ell)$ is reflexible if and only if there exists an element $\sigma \in \operatorname{Aut}(G)$ such that $r^{\sigma} = r^{-1}$ and $\ell^{\sigma} = \ell$.

Combinatorial Regular Map:

For a given finite set F and three fixed-point free involutory permutations t, r, ℓ on F, a quadruple $\mathcal{M} = \mathcal{M}(F; t, r, \ell)$ is called a combinatorial map if they satisfy two conditions: (1) $t\ell = \ell t$; (2) the group $\langle t, r, \ell \rangle$ acts transitively on F.

F: flag set;

 t, r, ℓ are called *longitudinal*, rotary, and transverse involution, respectively.

 $Mon(\mathcal{M}) = \langle t, r, \ell \rangle: Monodromy \ group \ of \ \mathcal{M},$

vertices, edges and face-boundaries of \mathcal{M} to be orbits of the subgroups $\langle t, r \rangle$, $\langle t, \ell \rangle$ and $\langle r, \ell \rangle$, respectively.

The incidence in \mathcal{M} can be represented by nontrivial intersection.

The map \mathcal{M} is called *unoriented*.

the even-word subgroup $\langle tr, r\ell \rangle$ of Mon (\mathcal{M}) has the index at most 2.

orientable: if the index is 2,

nonorientable: if the index is 1

Given two maps $\mathcal{M}_1 = \mathcal{M}(F_1; t_1, r_1, \ell_1)$ and $\mathcal{M}_2 = \mathcal{M}_2(F_2; t_2, r_2, \ell_2),$

Map isomorphism: bijection $\phi: F_1 \to F_2$ such that

 $\phi t_1 = t_2 \phi, \quad \phi r_1 = r_2 \phi, \quad \phi \ell_1 = \ell_2 \phi.$

Automorphism of \mathcal{M} : if $\mathcal{M}_1 = \mathcal{M}_2 = \mathcal{M};$

Automorphism group: Aut (\mathcal{M})

Remarks: Aut $(\mathcal{M}) = C_{S_F}(\operatorname{Mon}(\mathcal{M}));$

Aut (\mathcal{M}) acts semi-regularly on F,

Regular Map: Aut (\mathcal{M}) acts regularly on F.

Remarks: For regular map, we have

(i) Aut $(\mathcal{M}) \cong \operatorname{Mon}(\mathcal{M});$

(ii) Aut (\mathcal{M}) and Mon (\mathcal{M}) on F can be viewed as the right and the left regular representations of an abstract group G.

Algebraic Regular Map:

Given a regular map \mathcal{M} with $\operatorname{Aut}(\mathcal{M}) \cong G$, we may represent it by an *algebraic regular map* $\mathcal{M}(G; t, r, \ell)$.

 $\mathcal{M}(G; t_1, r_1, \ell_1) \cong \mathcal{M}(G; t_2, r_2, \ell_2)$ if and only if there exists an element $\sigma \in \operatorname{Aut}(G)$ such that $t_1^{\sigma} = t_2, r_1^{\sigma} = r_2$ and $\ell_1^{\sigma} = \ell_2$. 'Regular Maps'='Nonorientable Regular Maps'+'Reflexible Maps'

'Orientably-Regular Maps'= 'Chiral Maps' + 'Reflexible Maps'

3. Classify regular embeddings of the graphs of order pq

1. S.F. Du, J.H. Kwak and R. Nedela, A Classification of regular embeddings of graphs of order a product of two primes, *J. Algeb. Combin.* **19**(2004), 123–141.

2. S.F. Du and Jinho Kwak, Nonorientable regular embeddings of graphs of order p^2 , accepted by DM, 2009.

3. S.F. Du and F.R.Wang, Nonorientable regular embeddings of graphs of order a product of two distinct primes, in preparation.

Case 1: Orientably-Regular Maps:

First we define some groups and maps:

(I) Let $p \ge 7$, h any odd divisor of p-1 with $h \ge 3$, and let t be any fixed element of order 2h in $\mathbf{B}Z_p^*$. Define a group

$$G_1 = G_1(p,h) = \langle x, y \mid x^p = y^{2h} = 1, x^y = x^t \rangle.$$

$$\mathcal{M}_1 = \mathcal{M}_1(p, h, i) = \mathcal{M}(G_1; y^{2i}, xy^h).$$

where $i \in \mathbf{B}Z_h^*$.

(II) Let $p \ge 3$, h any even divisor of $p^2 - p$ with $h \ge 2$, and let t be any fixed element of order h in $\mathbf{B}Z_{p^2}^*$. Define a group

$$G_2 = G_2(p,h) = \langle x, y \mid x^{p^2} = y^h = 1, x^y = x^t \rangle.$$

$$\mathcal{M}_2 = \mathcal{M}_2(p, h, i) = \mathcal{M}(G_2; y^i, xy^{\frac{n}{2}}),$$

where $i \in \mathbf{B}Z_h^*$.

(III) Let $p \ge q \ge 2$, pq > 4 and $(t_1, t_2) \in \mathbf{B}Z_p^* \times \mathbf{B}Z_q^*$ such that $t_1 \ne t_2$ if p = q, and $\langle (t_1, t_2) \rangle$ contains (-1, 1) if q = 2, and contains (-1, -1) if $q \ge 3$. Let $h = [|t_1|, |t_2|]$, where $h \ge 2$ is even. Define a group

$$G_3 = G_3(p, q, t_1, t_2) = \langle a, b, x \mid a^p = b^q = x^h$$

$$= [a, b] = 1, a^{x} = a^{t_1}, b^{x} = b^{t_2} \rangle.$$

$$\mathcal{M}_3 = \mathcal{M}_3(p, q, t_1, t_2, i) = \mathcal{M}(G_3; x^i, abx^{\frac{n}{2}}),$$

where $i \in \mathbf{B}Z_h^*/(\mathbf{B}Z_h^*)^{2+}$ if p = q and $h = |t_1| = |t_2|$, and $i \in \mathbf{B}Z_h^*$ otherwise.

(**IV**) Let $\mathbf{B}F_p^* = \langle \theta \rangle$ and let x be an element of order h in $\mathrm{GL}(2, p)$, where $h \geq 3$, defined as follows:

- (1) If p = 2 and h = 3, then x = ||1, 1; 1, 0||; or
- (2) if $p \ge 3$, $h \mid (p^2 1)$ but $h \nmid (p 1)$, then $x = ||e, f\theta; f, e||$ for some fixed pair (e, f) such that |x| = h.

Let $T = \langle a, b \rangle$ be the translation subgroup of AGL(2, p) as before. Define a group

$$G_4 = G_4(p,h) = T : \langle x \rangle \le \operatorname{AGL}(2,p).$$

$$\mathcal{M}_4 = \mathcal{M}_4(p, h, i) = \mathcal{M}(G_4, x^i, az),$$

where either z = 1 for p = 2 or $z = x^{\frac{h}{2}}$ for $p \ge 3$; and $i \in \mathbf{B}Z_h^*/(\mathbf{B}Z_h^*)^{2+}$.

 (\mathbf{V}) Define a group

 $G_5 = G_5(p) = \langle a, b, x \mid a^p = b^p = x^2 = [a, b] = 1, a^x = b. \rangle.$

$$\mathcal{M}_5(p) = \mathcal{M}(G_5; a, x).$$

(VI) Let $\mathbf{B}F_p^* = \langle \theta \rangle$ and let $H = \langle x, y \rangle$ be a subgroup in $\mathrm{GL}(2, p)$ isomorphic to a Frobenius group $\mathbf{B}Z_q : \mathbf{B}Z_h$ with $h \geq 2$, and two elements x and y are defined as follows:

- (1) If p = 2, q = 3 and h = 2, then x = ||1, 1; 1, 0|| and y = ||0, 1; 1, 0||;
- (2) if $p > q \ge 3$, $q \mid (p-1)$ and h = 2, then $x = ||t, 0; 0, t^{-1}||$ where $t = \theta^{\frac{p-1}{q}}$ and y = ||0, 1; 1, 0||;
- (3) if $p > q \ge 3$, $q \mid (p+1)$ and h = 2, then $x = ||e, f\theta; f, e||$ for some fixed pair (e, f) such that |x| = h, and y = ||1, 0; -1, 0||; or
- (4) if $p = q \ge 3$ and h is an even divisor of p 1, then x = ||1, 1; 0, 1|| and y = ||1, 0; 0, t||, where $t = \theta^{\frac{p-1}{h}}$.

Define a group

$$G_6 = G_6(p, q, h) = T \colon H \le \operatorname{AGL}(2, p).$$

$$\mathcal{M}_{6}(p,q,h,i,j) := \mathcal{M}(G_{6};a'y^{j},x^{i}y^{\frac{h}{2}}),$$

 $i \in \mathbf{B}Z_{q}^{*}/(\mathbf{B}Z_{q}^{*})^{h+} \text{ and } j \in \mathbf{B}Z_{h}^{*}; \text{ and}$
 $a' = \begin{cases} t_{(1,0)} & \text{if } p = 2, \ q \mid (p+1) \text{ or } p = q, \\ t_{(1,1)} & \text{if } q \mid (p-1). \end{cases}$

Theorem 0.1 Let \mathcal{M} be an orientably-regular map with a underlying graph \mathcal{G} of order pq for any two primes p and q with $p \ge q$. Then \mathcal{M} is isomorphic to one of the following regular maps uniquely determined by the given integer parameters:

(1) p = q = 2: $\mathcal{M} \cong \mathcal{M}_5(2)$ $\mathcal{M} \cong \mathcal{M}_4(2, 3, 1)$

(2)
$$p = q \ge 3$$
:
 $\mathcal{M} \cong \mathcal{M}_2(p, h, i)$
 $\mathcal{M} \cong \mathcal{M}_3(p, p, t_1, t_2, i)$
 $\mathcal{M} \cong \mathcal{M}_4(p, h, i)$
 $\mathcal{M} \cong \mathcal{M}_6(p, p, h, i, j)$

(3)
$$p \geq 3$$
 and $q = 2$:
 $\mathcal{M} \cong \mathcal{M}_6(2, 3, 2, 1, 1)$ where $p = 3$
 $\mathcal{M} \cong \mathcal{M}_1(p, h, i)$
 $\mathcal{M} \cong \mathcal{M}_3(p, 2, t_1, 1, i)$
 $\mathcal{M} \cong \mathcal{M}_5(p)$, where $p \geq 3$

(4)
$$p > q \geq 3$$
:
 $\mathcal{M} \cong \mathcal{M}_3(p, q, t_1, t_2, i)$
 $\mathcal{M}_6(p, q, 2, i, 1).$

Case 2:Nonorientable Regular Maps of order p^2 :

(1) $G_1 = T : \langle x, y \rangle$, where $x = \begin{pmatrix} \theta^{-\frac{p-1}{n}} & 0 \\ 0 & \theta^{\frac{p-1}{n}} \end{pmatrix}$ and $y = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $F_p^* = \langle \theta \rangle$, $p \ge 5$, $n \ge 4$ is even and $n \mid (p-1)$. $\mathcal{M}(G_1; y, x^i y, t_{(1,1)} x^{\frac{n}{2}})$, where $i \in Z_n^* \cap \{1, \dots, \frac{n}{2}\};$ (2) $G_2 = T : \langle x, y \rangle$, where $x = \begin{pmatrix} e & f\theta \\ f & e \end{pmatrix}$ and $y = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, where $F_p^* = \langle \theta \rangle$, $F_{p^2} = F_p(\varepsilon)$, $\varepsilon^2 = \theta$ and $e + f\varepsilon$ is a given generator of the subgroup of order n of $F_{p^2}^*$, $p \ge 3, n \ge 4$ is even and $n \mid (p+1)$. $\mathcal{M}(G_2; y, x^i y, t_{(1,0)} x^{\frac{n}{2}})$, where $i \in Z_n^* \cap \{1, \dots, \frac{n}{2}\};$ (3) $G_3 = T : \langle x, y \rangle$, where $x = \begin{pmatrix} -1 & -1 \\ 0 & -1 \end{pmatrix}$ and $y = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, with $p \ge 3$. $\mathcal{M}(G_3; y, xy, t_{(1,0)} x^p)$, where $p \ge 3$ (4) $\mathcal{M}(S_4, (12), (13), (12)(34))$.

Theorem 0.2 Let \mathcal{M} be a nonorientable regular map with the underlying graph X of order p^2 , for any prime p. Then \mathcal{M} is isomorphic to one of the following maps $\mathcal{M}(G_1; y, x^i y, t_{(1,1)} x^{\frac{n}{2}})$ $\mathcal{M}(G_2; y, x^i y, t_{(1,0)} x^{\frac{n}{2}})$ $\mathcal{M}(G_3; y, xy, t_{(1,0)} x^p)$ $\mathcal{M}(S_4, (12), (13), (12)(34)).$

Case 3: Nonorienatble Case for $p \neq q$

Theorem 0.3 Let \mathcal{M} be a nonorientable regular embedding of the graph X of order pq, where p > q are two primes. Then \mathcal{M} is isomorphic to one of the following algebraic maps $\mathcal{M}(G; t, r, l)$

- (1) $G \cong A_5$, t = (12)(34), r = (15)(24) and l = (13)(24)or (14)(23), where $X \cong K_6$.
- (2) $G \cong A_5, t = (13)(45), r = (12)(45)$ and l = (14)(35),where X is Peterson graph.
- (3) $G \cong S_5$, (t, r, l) = ((23), (12)(45), (14)(23));((23), (12)(45), (14)) ((12)(45), (23), (14)(25)), where X is the complement of Peterson graph.
- (4) $G \cong S_5$, t = (24), r = (12)(34) and l = (15) or (15)(24), where pq = 15.
- (5) Set $G = \langle \alpha, \beta \rangle$: $\langle x, y \rangle \leq \operatorname{AGL}(2, p)$, where $\alpha = t_{(1,0)}, \beta = t_{(0,1)}$ and $\langle x, y \rangle \cong D_{2q}$ and x and y are defined as follows:

(i) $2q \mid (p-1): x = \begin{pmatrix} \delta^{-1} & 0 \\ 0 & \delta \end{pmatrix}$ and $y = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, where δ is order of 2q in F_p^* . Set $t = -e_2$, $r = t_{(-\delta^i, 1)}x^iy$ and l = y, where $i \in Z_{2q}^* \cap \in \{1, \cdots, q\}$.

(ii) $2q \mid (p+1): x = \begin{pmatrix} e & f\theta \\ f & e \end{pmatrix}$ and $y = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, where $F_p^* = \langle \theta \rangle$, $F_{p^2} = F_p(\varepsilon)$ for $\varepsilon^2 = \theta$, $e + f\varepsilon$ is

a given element of order 2q in
$$F_{p^2}^*$$
. Set $t = -e_2$,
 $r = t_{(-f_i(e_i+1)^{-1},1)}x^iy$ and $l = y$, where $i \in Z_{2q}^* \cap \{1, \dots, q\}$ and $x^i = \begin{pmatrix} e_i & f_i \\ f_i & e_i \end{pmatrix}$.
In both cases, $X = C_q[\overline{K_p}], p > q \ge 3$.

(6) $G = PGL(2, p), p \ge 7$ and $q = \frac{p+1}{2}$ or $\frac{p-1}{2}$ is a prime.

(i)
$$\frac{p+1}{2}$$
 is prime: $t = \overline{\begin{pmatrix} 0 & 1 \\ -\theta^k & 0 \end{pmatrix}}, r = \overline{\begin{pmatrix} 0 & 1 \\ -\theta^{i+k} & 0 \end{pmatrix}}$ and
 $l = \overline{\begin{pmatrix} 1 & \beta \\ \beta\theta^k & -1 \end{pmatrix}}, \text{ where } k \in \{0, 1\}, i, \beta \in \{1, 2, \cdots, \frac{p-1}{2}\},$
 $i \in Z_{p-1}^*, \text{ and if } k = 0 \text{ then } \beta^2 \neq -1.$

- (ii) $\frac{p-1}{2}$ is prime: $t = \overline{\begin{pmatrix} 1 & \nu \\ \nu & -1 \end{pmatrix}}, r = t \begin{pmatrix} 1 & -\lambda \\ \lambda & 1 \end{pmatrix}^{i}$ and $l = \overline{\begin{pmatrix} \nu & \beta-1 \\ -\beta-1 & -\nu \end{pmatrix}},$ where $F_{p^{2}}^{*} = \langle 1 + \lambda \varepsilon \rangle$ for $\varepsilon^{2} = -1, \nu \in \{0, \lambda\}, i \in Z_{p+1}^{*} \cap \{1, 2, \cdots, \frac{p+1}{2}\}, \beta \in \{0, 1, 2, \cdots, \frac{p-1}{2}\}$ and if $\nu = 0$ then $\beta \neq 0, 1$.
- (7) G = PSL(2, p), where $p \ge 11$ and $q = \frac{p+1}{2}$ or $\frac{p-1}{2}$ is a prime.

(i)
$$\frac{p+1}{2}$$
 is prime: $t = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $r = \begin{pmatrix} 0 & \theta^{-i} \\ -\theta^{i} & 0 \end{pmatrix}$ and $l = \overline{\begin{pmatrix} 1 & \beta \\ \beta & -1 \end{pmatrix}}$, where $i \in Z_{\frac{p-1}{2}}^{*} \cap \{1, 2, \cdots, \frac{p-1}{4}\}$, $\beta \in \{1, 2, \cdots, \frac{p-1}{2}\}$ and $1 + \beta^{2} \in \langle \theta^{2} \rangle$.
(ii) $\frac{p-1}{2}$ is prime: $t = \overline{\begin{pmatrix} 1 & \lambda \\ \lambda & -1 \end{pmatrix}}$, $r = t \overline{\begin{pmatrix} 1 & -\lambda \\ \lambda & 1 \end{pmatrix}}^{2i}$ and

$$\begin{split} l &= \overline{\left(\begin{array}{cc}\lambda & \beta-1\\ -\beta-1 & -\lambda\end{array}\right)}, \text{ where } F_{p^2}^* = \langle 1+\lambda\varepsilon\rangle \text{ for } \varepsilon^2 = -1, \\ i &\in Z_{\frac{p+1}{2}}^* \cap \{1, 2, \cdots, \frac{p+1}{4}\}, \ \beta \in \{0, 1, 2, \cdots, \frac{p-1}{2}\} \\ and \ \beta^2 - \lambda^2 - 1 \in \langle \theta^2 \rangle. \end{split}$$

In (5) - (7), the maps are uniquely determined by the given parameters.