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.

A map is called regular if its automorphism group acts

regularly on the set of all flags (incident vertex-edge-face

triples). An orientable map is called orientably-regular

if the group of all orientation-preserving automorphisms is

regular on the set of all arcs (incident vertex-edge pairs). If

an orientably-regular map admits also orientation-reversing

automorphisms, then it is regular, and called reflexible. A

regular embedding and orientably-regular embedding of

a graph G are respectively a 2-cell embeddings of G as a

regular map and orientably-regular map on some closed

surface.

In this talk, we shall give a classification of orientably-

regular and regular embeddings of graphs of order pq,

where p and q are primes.
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1. Surfaces and Embeddings

2-manifold M: a topological space M which is Hausdorf

and is covered by countably many open sets isomorphic to

either 2-dim open ball or 2-dim half-ball;

Closed 2-manifold M: compact, boundary is empty;

Surface S: closed, connected 2-manifold;

Classification of Surfaces:

(i) Orientable Surfaces: Sg, g = 0, 1, 2, · · · ,

v + f − e = 2− 2g

(ii) Nonorientable Surfaces: Nk, k = 0, 1, 2, · · · ,

v + f − e = 2− k
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Embeddings of a graph X in the surface is a continuous

one-to-one function i : X → S.

2-cell Embeddings: each region is homemorphic to an

open disk.

The primitive objective of topological graph theory is

to draw a graph on a surface so that no two edges cross.

Topological Map M: a 2-cell embedding of a graph

into a surface. The embedded graph X is called the un-

derlying graph of the map.

Automorphism of a mapM : an automorphism of the un-

derlying graph X which can be extended to self-homeomorphism

of the surface.

Automorphism group Aut (M) : all the automorphisms

of the map M.

Remark: Aut (M) acts semi-regularly on the flags of X.

Regular Map: Aut (M) acts regularly on the flags (inci-

dent vertex-edge-face triples).

Orientably-Regular Map: map is orientable and the group

of all orientation-preserving automorphisms is regular on

the arcs (incident vertex-edge pairs).

Reflexible Map: Orientably-regular and regular.

Chiral Map: Orientably-Regular Map but not regular.
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Three main research directions:

1. Classifying regular maps by groups;

2. Classifying regular maps by underlying graphs

3. Classifying regular maps by genus
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2. Combinatorial and Algebraic Map

Combinatorial Orientably-Regular Map:

connected simple graph G = G(V, D), with vertex set

V = V (G), dart (arc) set D = D(G).

arc-reversing involution L: interchanging the two arcs

underlying every given edge.

rotation R: cyclically permutes the arcs initiated at v for

each vertex v ∈ V (G).

Map M with underlying graph G:

the triple M = M(G; R, L).

Remarks: Monodromy group Mon(M) := 〈R,L〉 acts

transitively on D.

Given two maps

M1 = M(G1; R1, L1), M2 = M(G2; R2 L2),

Map (orientation persevering ) isomorphism: bijection

φ : D(G1) → D(G2) such that

L1φ = φL2, R1φ = φR2

Automorphism φ of M : if M1 = M2 = M;

Automorphism group: Aut (M)
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Remarks: Aut (M) = CSD
(Mon(M));

Aut (M) acts semi-regularly on D,

Orientably-Regular Map: Aut (M) acts regularly on D.

For an orientably-regular map, we have

(i) Aut (M) ∼= Mon(M);

(ii) Aut (M) and Mon(M) on D can be viewed as the

right and the left regular representations of an abstract

group G = Aut (M) ∼= Mon(M)
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Algebraic Orientably-Regular Map:

Given an orientably-regular map M with Aut (M) ∼=
G, we may represent it by an algebraic map M(G; r, l),

where |l| = 2.

(i) M(G; r1, `1) ∼= M(G; r2, `2) if and only if there

exists an element σ ∈ Aut (G) such that rσ
1 = r2 and

`σ
1 = `2.

(ii) M(G; r, `) is reflexible if and only if there exists an

element σ ∈ Aut (G) such that rσ = r−1 and `σ = `.
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Combinatorial Regular Map:

For a given finite set F and three fixed-point free in-

volutory permutations t, r, ` on F , a quadruple M =

M(F ; t, r, `) is called a combinatorial map if they sat-

isfy two conditions: (1) t` = `t; (2) the group 〈t, r, `〉
acts transitively on F.

F : flag set;

t, r, ` are called longitudinal, rotary, and transverse in-

volution, respectively.

Mon(M) = 〈t, r, `〉: Monodromy group of M,

vertices, edges and face-boundaries of M to be orbits of

the subgroups 〈t, r〉, 〈t, `〉 and 〈r, `〉, respectively.

The incidence in M can be represented by nontrivial in-

tersection.

The map M is called unoriented.

the even-word subgroup 〈tr, r`〉 of Mon(M) has the index

at most 2.

orientable: if the index is 2,

nonorientable: if the index is 1
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Given two maps M1 = M(F1; t1, r1, `1) and M2 =

M2(F2; t2, r2, `2),

Map isomorphism: bijection φ : F1 → F2 such that

φt1 = t2φ, φr1 = r2φ, φ`1 = `2φ.

Automorphism of M : if M1 = M2 = M;

Automorphism group: Aut (M)

Remarks: Aut (M) = CSF
(Mon(M));

Aut (M) acts semi-regularly on F,

Regular Map: Aut (M) acts regularly on F.

Remarks: For regular map, we have

(i) Aut (M) ∼= Mon(M);

(ii) Aut (M) and Mon(M) on F can be viewed as the

right and the left regular representations of an abstract

group G.
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Algebraic Regular Map:

Given a regular map M with Aut (M) ∼= G, we may

represent it by an algebraic regular map M(G; t, r, `).

M(G; t1, r1, `1) ∼= M(G; t2, r2, `2) if and only if there

exists an element σ ∈ Aut (G) such that tσ1 = t2, rσ
1 = r2

and `σ
1 = `2.
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‘Regular Maps‘=‘Nonorientable Regular Maps‘ + ‘Re-

flexible Maps‘

‘Orientably-Regular Maps‘=‘Chiral Maps‘ + ‘Reflexible

Maps‘
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3. Classify regular embeddings of the graphs

of order pq

1. S.F. Du, J.H. Kwak and R. Nedela, A Classification

of regular embeddings of graphs of order a product of two

primes, J. Algeb. Combin. 19(2004), 123–141.

2. S.F. Du and Jinho Kwak, Nonorientable regular em-

beddings of graphs of order p2, accepted by DM, 2009.

3. S.F. Du and F.R.Wang, Nonorientable regular em-

beddings of graphs of order a product of two distinct primes,

in preparation.
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Case 1: Orientably-Regular Maps:

First we define some groups and maps:

(I) Let p ≥ 7, h any odd divisor of p − 1 with h ≥ 3,

and let t be any fixed element of order 2h in BZ∗
p . Define

a group

G1 = G1(p, h) = 〈x, y
∣∣ xp = y2h = 1, xy = xt〉.

M1 = M1(p, h, i) = M(G1; y
2i, xyh).

where i ∈ BZ∗
h.

(II) Let p ≥ 3, h any even divisor of p2 − p with h ≥ 2,

and let t be any fixed element of order h in BZ∗
p2. Define

a group

G2 = G2(p, h) = 〈x, y
∣∣ xp2

= yh = 1, xy = xt〉.

M2 = M2(p, h, i) = M(G2; y
i, xy

h
2 ),

where i ∈ BZ∗
h.

(III) Let p ≥ q ≥ 2, pq > 4 and (t1, t2) ∈ BZ∗
p × BZ∗

q

such that t1 6= t2 if p = q, and 〈(t1, t2)〉 contains (−1, 1) if

q = 2, and contains (−1,−1) if q ≥ 3. Let h = [|t1|, |t2|],
where h ≥ 2 is even. Define a group

G3 = G3(p, q, t1, t2) = 〈a, b, x
∣∣ ap = bq = xh
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= [a, b] = 1, ax = at1, bx = bt2〉.

M3 = M3(p, q, t1, t2, i) = M(G3; x
i, abx

h
2 ),

where i ∈ BZ∗
h/(BZ∗

h)2+ if p = q and h = |t1| = |t2|, and

i ∈ BZ∗
h otherwise.

(IV) Let BF ∗
p = 〈θ〉 and let x be an element of order h

in GL(2, p), where h ≥ 3, defined as follows:

(1) If p = 2 and h = 3, then x = ||1, 1; 1, 0||; or

(2) if p ≥ 3, h
∣∣ (p2 − 1) but h - (p − 1), then x =

||e, fθ; f, e|| for some fixed pair (e, f ) such that |x| =

h.

Let T = 〈a, b〉 be the translation subgroup of AGL(2, p)

as before. Define a group

G4 = G4(p, h) = T :〈x〉 ≤ AGL(2, p).

M4 = M4(p, h, i) = M(G4, x
i, az),

where either z = 1 for p = 2 or z = x
h
2 for p ≥ 3; and

i ∈ BZ∗
h/(BZ∗

h)2+.

(V) Define a group

G5 = G5(p) = 〈a, b, x
∣∣ ap = bp = x2 = [a, b] = 1, ax = b.〉.
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M5(p) = M(G5; a, x).

(VI) Let BF ∗
p = 〈θ〉 and let H = 〈x, y〉 be a subgroup in

GL(2, p) isomorphic to a Frobenius group BZq :BZh with

h ≥ 2, and two elements x and y are defined as follows:

(1) If p = 2, q = 3 and h = 2, then x = ||1, 1; 1, 0|| and

y = ||0, 1; 1, 0||;
(2) if p > q ≥ 3, q

∣∣ (p − 1) and h = 2, then x =

||t, 0; 0, t−1|| where t = θ
p−1
q and y = ||0, 1; 1, 0||;

(3) if p > q ≥ 3, q
∣∣ (p + 1) and h = 2, then x =

||e, fθ; f, e|| for some fixed pair (e, f ) such that |x| =

h, and y = ||1, 0;−1, 0||; or

(4) if p = q ≥ 3 and h is an even divisor of p − 1, then

x = ||1, 1; 0, 1|| and y = ||1, 0; 0, t||, where t = θ
p−1
h .

Define a group

G6 = G6(p, q, h) = T :H ≤ AGL(2, p).

M6(p, q, h, i, j) := M(G6; a
′yj, xiy

h
2 ),

i ∈ BZ∗
q /(BZ∗

q )h+ and j ∈ BZ∗
h; and

a′ =
{

t(1,0) if p = 2, q
∣∣ (p + 1) or p = q,

t(1,1) if q
∣∣ (p− 1).
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Theorem 0.1 LetM be an orientably-regular map with

a underlying graph G of order pq for any two primes

p and q with p ≥ q. Then M is isomorphic to one of

the following regular maps uniquely determined by the

given integer parameters:

(1) p = q = 2:

M∼= M5(2)

M∼= M4(2, 3, 1)

(2) p = q ≥ 3:

M∼= M2(p, h, i)

M∼= M3(p, p, t1, t2, i)

M∼= M4(p, h, i)

M∼= M6(p, p, h, i, j)

(3) p ≥ 3 and q = 2:

M∼= M6(2, 3, 2, 1, 1) where p = 3

M∼= M1(p, h, i)

M∼= M3(p, 2, t1, 1, i)

M∼= M5(p), where p ≥ 3

(4) p > q ≥ 3:

M∼= M3(p, q, t1, t2, i)

M6(p, q, 2, i, 1).
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Case 2:Nonorientable Regular Maps of order p2:

(1) G1 = T : 〈x, y〉, where x =
(

θ−
p−1

n 0
0 θ

p−1
n

)
and y =(

0 1
1 0

)
, F ∗

p = 〈θ〉, p ≥ 5, n ≥ 4 is even and n
∣∣ (p− 1).

M(G1; y, xiy, t(1,1)x
n
2 ), where i ∈ Z∗

n ∩ {1, . . . , n
2};

(2) G2 = T : 〈x, y〉, where x =
(

e fθ
f e

)
and y =(

1 0
0 −1

)
, where F ∗

p = 〈θ〉, Fp2 = Fp(ε), ε2 = θ and e+fε

is a given generator of the subgroup of order n of F ∗
p2,

p ≥ 3, n ≥ 4 is even and n
∣∣ (p + 1).

M(G2; y, xiy, t(1,0)x
n
2 ), where i ∈ Z∗

n ∩ {1, . . . , n
2};

(3) G3 = T : 〈x, y〉, where x =
(

−1 −1
0 −1

)
and y =(

1 0
0 −1

)
, with p ≥ 3.

M(G3; y, xy, t(1,0)x
p), where p ≥ 3

(4) M(S4, (12), (13), (12)(34)).

Theorem 0.2 Let M be a nonorientable regular map

with the underlying graph X of order p2, for any prime

p. Then M is isomorphic to one of the following maps

M(G1; y, xiy, t(1,1)x
n
2 )

M(G2; y, xiy, t(1,0)x
n
2 )

M(G3; y, xy, t(1,0)x
p)

M(S4, (12), (13), (12)(34)).
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Case 3: Nonorienatble Case for p 6= q

Theorem 0.3 Let M be a nonorientable regular em-

bedding of the graph X of order pq, where p > q are two

primes. Then M is isomorphic to one of the following

algebraic maps M(G; t, r, l)

(1) G ∼= A5, t = (12)(34), r = (15)(24) and l = (13)(24)

or (14)(23), where X ∼= K6.

(2) G ∼= A5, t = (13)(45), r = (12)(45) and l = (14)(35),

where X is Peterson graph.

(3) G ∼= S5, (t, r, l) = ((23), (12)(45), (14)(23));

((23), (12)(45), (14)) ((12)(45), (23), (14)(25)), where

X is the complement of Peterson graph.

(4) G ∼= S5, t = (24), r = (12)(34) and l = (15) or

(15)(24), where pq = 15.

(5) Set G = 〈α, β〉 : 〈x, y〉 ≤ AGL(2, p), where α =

t(1,0), β = t(0,1) and 〈x, y〉 ∼= D2q and x and y are

defined as follows:

(i) 2q
∣∣ (p−1): x =

(
δ−1 0
0 δ

)
and y =

(
0 1
1 0

)
, where

δ is order of 2q in F ∗
p . Set t = −e2, r = t(−δi,1)x

iy

and l = y, where i ∈ Z∗
2q∩ ∈ {1, · · · , q}.

(ii) 2q
∣∣ (p + 1): x =

(
e fθ
f e

)
and y =

(
1 0
0 −1

)
,

where F ∗
p = 〈θ〉, Fp2 = Fp(ε) for ε2 = θ, e + fε is

19



a given element of order 2q in F ∗
p2. Set t = −e2,

r = t(−fi(ei+1)−1,1)x
iy and l = y, where i ∈ Z∗

2q ∩
{1, · · · , q} and xi =

(
ei fiθ
fi ei

)
.

In both cases, X = Cq[Kp], p > q ≥ 3.

(6) G = PGL(2, p), p ≥ 7 and q = p+1
2 or p−1

2 is a

prime.

(i) p+1
2 is prime: t =

(
0 1
−θk 0

)
, r =

(
0 1

−θi+k 0

)
and

l =
(

1 β
βθk −1

)
, where k ∈ {0, 1}, i, β ∈ {1, 2, · · · , p−1

2 },
i ∈ Z∗

p−1, and if k = 0 then β2 6= −1.

(ii) p−1
2 is prime: t =

(
1 ν
ν −1

)
, r = t

(
1 −λ
λ 1

)i

and l =
(

ν β − 1
−β − 1 −ν

)
, where F ∗

p2 = 〈1 + λε〉 for

ε2 = −1, ν ∈ {0, λ}, i ∈ Z∗
p+1 ∩ {1, 2, · · · , p+1

2 },
β ∈ {0, 1, 2, · · · , p−1

2 } and if ν = 0 then β 6= 0, 1.

(7) G = PSL(2, p), where p ≥ 11 and q = p+1
2 or p−1

2 is

a prime.

(i) p+1
2 is prime: t =

(
0 1
−1 0

)
, r =

(
0 θ−i

−θi 0

)
and

l =
(

1 β
β −1

)
, where i ∈ Z∗

p−1
2
∩ {1, 2, · · · , p−1

4 }, β ∈
{1, 2, · · · , p−1

2 } and 1 + β2 ∈ 〈θ2〉.

(ii) p−1
2 is prime: t =

(
1 λ
λ −1

)
, r = t

(
1 −λ
λ 1

)2i

and
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l =
(

λ β − 1
−β − 1 −λ

)
, where F ∗

p2 = 〈1+λε〉 for ε2 = −1,

i ∈ Z∗
p+1
2
∩ {1, 2, · · · , p+1

4 }, β ∈ {0, 1, 2, · · · , p−1
2 }

and β2 − λ2 − 1 ∈ 〈θ2〉.
In (5) − (7), the maps are uniquely determined by

the given parameters.
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