Constructions of bipartite and bipartite-regular hypermaps

Rui Duarte rduarte@ua.pt

University of Aveiro, Portugal

GEMS 2009 Tále, Low Tatras, Slovakia June 29, 2009

Rui Duarte

University of Aveiro

1 Bipartite and bipartite-regular hypermaps

- 2 Constructions of bipartite hypermaps
- **3** Properties of the constructions of bipartite hypermaps

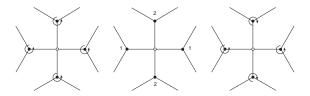
4 Constructions

5 Surfaces with bipartite-regular hypermaps

6 References

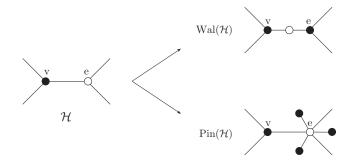
Rui Duarte

University of Aveiro



Orientable / bipartite / pseudo-orientable Orientably-regular / bipartite-regular / pseudo-orientably-regular

Pseudo-orientable / pseudo-orientably-regular (Steve Wilson)



Walsh, 1975 Breda and Duarte, 2007

Rui Duarte

University of Aveiro

$$\varphi(\mathcal{H}) \left\{ \begin{array}{c} \Delta \\ \parallel^2 \\ \Delta^{\hat{0}} \xrightarrow{\varphi} \\ \downarrow \\ H\varphi^{-1} \longrightarrow H \end{array} \right\} \mathcal{H}$$

 $\varphi(\mathcal{H})$ is denoted by $\mathcal{H}^{\varphi^{-1}}$ in Breda and Duarte, 2007

University of Aveiro

Lemma: Let $\varphi : \Delta^{\hat{0}} \to \Delta$ be an epimorphism, \mathcal{B} a bipartite hypermap and \mathcal{B} a hypermap subgroup for \mathcal{B} . Then

 $\mathcal{B} \cong \varphi(\cdot) \Leftrightarrow \ker \varphi \subseteq \mathcal{B}^{g}, \text{ for some } g \in \Delta.$

(Since ker $\varphi \triangleleft \Delta^{\hat{0}}$, $\mathcal{B} \cong \varphi(\cdot) \Leftrightarrow \ker \varphi \subseteq B$ or $(\ker \varphi)^{R_0} \subseteq B$.) **Corollary:** Let $\varphi : \Delta^{\hat{0}} \rightarrow \Delta$ be an epimorphism and \mathcal{A} and \mathcal{B} hypermaps such that \mathcal{B} is bipartite.

1
$$\mathcal{A} \to \mathcal{B} \And \mathcal{A} \cong \varphi(\cdot) \Rightarrow \mathcal{B} \cong \varphi(\cdot)$$

2 $\mathcal{B}^+ \cong \varphi(\cdot) \Rightarrow \mathcal{B} \cong \varphi(\cdot)$
3 $\mathcal{B}_{\Delta} \cong \varphi(\cdot) \Rightarrow \mathcal{B} \cong \varphi(\cdot)$
4 $\mathcal{B} \cong \varphi(\cdot) \Rightarrow \mathcal{B}^{\Delta} \cong \varphi(\cdot)$

Rui Duarte

Lemma: Let $\varphi : \Delta^{\hat{0}} \to \Delta$ be an epimorphism and \mathcal{H} a hypermap.

- 1 $\varphi(\mathcal{H})$ has no boundary $\Rightarrow \mathcal{H}$ has no boundary.
- **2** $\varphi(\mathcal{H})$ is orientable $\Rightarrow \mathcal{H}$ is orientable.

Theorem: Let $\varphi : \Delta^{\hat{0}} \to \Delta$ be an epimorphism and \mathcal{H} , \mathcal{N} and \mathcal{O} be hypermaps such that \mathcal{N} has no boundary and \mathcal{O} is orientable. The following conditions are equivalent:

1 $R_1, R_2, R_1^{R_0}, R_2^{R_0} \notin \Delta^+ \varphi^{-1}.$

2
$$\Delta^+ \varphi^{-1} = \Delta^+ \cap \Delta^0$$
, that is, $\varphi(\mathcal{T}_{\Delta^+}) \cong \mathcal{T}_{\Delta^{+00}}$.

- 3 ker $\varphi \subseteq \Delta^+$.
- 4 $\varphi(\mathcal{N})$ has no boundary.
- **5** $\varphi(\mathcal{O})$ is orientable.
- 7 $\varphi(\mathcal{H})^+ \cong \varphi(\cdot).$

Corollary: Let $\varphi : \Delta^{\hat{0}} \to \Delta$ be an epimorphism such that $R_1, R_2, R_1^{R_0}, R_2^{R_0} \notin \Delta^+ \varphi^{-1}$, \mathcal{H} a hypermap and \mathcal{B} a bipartite hypermap. Then:

- **1** $\varphi(\mathcal{H})$ is orientable $\Leftrightarrow \mathcal{H}$ is orientable.
- **2** $\varphi(\mathcal{H})$ has no boundary $\Leftrightarrow \mathcal{H}$ has no boundary.
- $\Im \varphi(\mathcal{H}^+) \cong \varphi(\mathcal{H})^+.$
- 4 $\mathcal{B} \cong \varphi(\cdot) \Leftrightarrow \mathcal{B}^+ \cong \varphi(\cdot).$

Corollary: \mathcal{B} non-orientable & $\mathcal{B} \cong \varphi(\mathcal{H}) \Rightarrow \mathcal{B}^+ \cong \varphi(\mathcal{H}^+)$.

g	$oldsymbol{g}arphi_1$	$\pmb{g} arphi_2$	$oldsymbol{g}arphi_3$	$oldsymbol{g}arphi_4$	$oldsymbol{g} arphi_5$
R_1	R_1	R_1	R_1	R_1	R_1
R_2	R_2	R_2	R_2	R_2	R ₂
$R_1^{R_0}$	R_0	R_0	R_2	R_0	$R_1^{R_0}$
$R_2^{R_0}$	R ₂	R_0	R_0	R_1	R_0

 $\varphi_1(\mathcal{H})$ and $\varphi_2(\mathcal{H})$ are denoted by Wal(\mathcal{H}) and Pin(\mathcal{H}) in Breda and Duarte, 2007

Constructions of bipartite and bipartite-regular hypermaps

Rui Duarte

Surfaces with bipartite-regular hypermaps

Theorem: All surfaces have bipartite-regular hypermaps.

Orientable case: Breda and Duarte, 2007 Non-orientable case:

Let \mathcal{PP}_{2k} the regular hypermap on the projective plane of type (2,2,2k). Then:

1 $\varphi_4(\mathcal{PP}_{2k})$ is non-orientable and has genus 2k

$$\chi(\varphi_4(\mathcal{PP}_{2k})) = 2 - 2k$$

2 $\varphi_5(\mathcal{PP}_{2k})$ is non-orientable and has genus 2k - 1

$$\chi(\varphi_5(\mathcal{PP}_{2k})) = 2 - (2k - 1)$$

University of Aveiro

- Antonio Breda d'Azevedo and Rui Duarte, *Bipartite-uniform hypermaps on the sphere*, Electron. J. Combin. **14** (2007), 1–20.
- Rui Duarte, 2-restrictedly-regular hypermaps of small genus, Ph.D. thesis, University of Aveiro, 2007.
- T.R.S. Walsh, *Hypermaps versus bipartite maps*, J. Comb. Theory, Ser. B **18** (1975), 155–163.