Facial strong parity colourings of plane graphs

Stanislav Jendrol'

P. J. Šafárik University, Košice

25. júna 2009

A graph is called *odd* if the degree of its vertices is odd or zero.

Stanislav Jendrol Facial strong parity colourings of plane graphs

A graph is called *odd* if the degree of its vertices is odd or zero.

Theorem (Pyber 1991)

The edges of any simple graph can be coloured with at most four colours in such a way that each colour class induces an odd subgraph.

Consider an edge-colouring of a plane graph G. We say that a colour c appears on a face α of G an odd number of times provided that an odd number of edges incident with α is coloured with colour c.

Consider an edge-colouring of a plane graph G. We say that a colour c appears on a face α of G an odd number of times provided that an odd number of edges incident with α is coloured with colour c.

Theorem (Pyber, 1991)

Let G be a simple 3-connected plane graph. Then the edges of G can be coloured with four colours 1, 2, 3, 4 in such a way that for every colour $c \in \{1, 2, 3, 4\}$ and every face α of G no edge or an odd number of edges incident with α is coloured with c.

Stanislav Jendroľ

Let G be a plane graph. The facial strong parity chromatic index $\chi'_p(G)$ of G is the minimum integer k of colours used in a proper edge colouring of G having property that for every colour $c \in \{1, 2, ..., k\}$ and every face α of G no edge or an odd number of edges incident with α is coloured with c.

Let G be a plane graph. The facial strong parity chromatic index $\chi'_p(G)$ of G is the minimum integer k of colours used in a proper edge colouring of G having property that for every colour $c \in \{1, 2, ..., k\}$ and every face α of G no edge or an odd number of edges incident with α is coloured with c.

Theorem

Let G be a 3-connected plane graph, G^* be the dual of G and let $\chi'(G^*)$ be a chromatic index of $G^*.$ Then

 $\chi_p'(G) \le \chi'(G^*).$

Stanislav Jendroľ

From the Four Colour Theorem we immediately have

Stanislav Jendrol' Facial strong parity colourings of plane graphs

From the Four Colour Theorem we immediately have

Theorem

Let G be a plane triangulation, then

 $\chi_p'(G) = 3.$

Stanislav Jendroľ Facial strong parity colourings of plane graphs

From the Four Colour Theorem we immediately have

Theorem

Let G be a plane triangulation, then

 $\chi'_p(G) = 3.$

Theorem

Let C_n be a cycle on n vertices, then

 $\chi_p'(C_n) \le 5.$

Stanislav Jendroľ

P. J. Šafárik University, Košice

Strong parity chromatic index

Two faces α and β of a plane graph G touch each other if they share a vertex in common. Two faces α and β of a plane graph G*influence* each other if there is a face that touches both α and β .

Strong parity chromatic index

Two faces α and β of a plane graph G touch each other if they share a vertex in common. Two faces α and β of a plane graph G*influence* each other if there is a face that touches both α and β .

Theorem

Let G be a simple 2-connected plane graph in which no two faces of degrees ≥ 4 touch each other. Then

 $\chi_p'(G) \le 6.$

Strong parity chromatic index

Two faces α and β of a plane graph G touch each other if they share a vertex in common. Two faces α and β of a plane graph G*influence* each other if there is a face that touches both α and β .

Theorem

Let G be a simple 2-connected plane graph in which no two faces of degrees ≥ 4 touch each other. Then

 $\chi_p'(G) \le 6.$

Theorem

Let G be a simple 3-connected graph and let $m \ge 7$ be an integer. If no two faces of G of degree $\ge m + 1$ influence each other, then

$$\chi'_p(G) \le m+3.$$

Stanislav Jendroľ

Theorem (Czap, Jendrol', Kardoš, 2009)

Let G be a bridgeless plane multigraph, then

 $\chi_p'(G) \le 332.$

Stanislav Jendroľ

P. J. Šafárik University, Košice

Consider a vertex-colouring of a plane graph G. We say that a colour c appears on a face α of G an odd number of times provided that an odd number of vertices incident with α is coloured with colour c.

Consider a vertex-colouring of a plane graph G. We say that a colour c appears on a face α of G an odd number of times provided that an odd number of vertices incident with α is coloured with colour c.

Theorem (Czap, Jendrol', 2008)

Let G be a simple 2-connected plane graph. Then the vertices of G can be coloured with four colours 1, 2, 3, and 4 in such a way that on every face α of G at least one colour $c \in \{1, 2, 3, 4\}$ appears an odd number of times.

Let G be a plane graph. The facial strong parity chromatic number $\chi_p(G)$ of G is the minimum integer k of colours used in a proper vertex colouring of G having property that for every colour $c \in \{1, 2, ..., k\}$ and every face α of G no vertex or an odd number of vertices incident with α is coloured with c.

Let G be a plane graph. The facial strong parity chromatic number $\chi_p(G)$ of G is the minimum integer k of colours used in a proper vertex colouring of G having property that for every colour $c \in \{1, 2, ..., k\}$ and every face α of G no vertex or an odd number of vertices incident with α is coloured with c.

Theorem (Czap, Jendrol', Kardoš, 2009)

Let G be a 3-connected plane graph in which no two faces of degree ≥ 4 touch each other. Then

 $\chi_p(G) \le 6.$

Moreover the bound 6 is the best possible.

Stanislav Jendroľ

Theorem (Czap, Jendrol', Kardoš, 2009)

Let G be a simple 3-connected plane graph such that no two faces of degree at least 5 influence each other. Then

 $\chi_p(G) \le 8.$

Theorem (Czap, Jendrol', Kardoš, 2009)

Let G be a simple 3-connected plane graph such that no two faces of degree at least 5 influence each other. Then

 $\chi_p(G) \le 8.$

Theorem (Czap, Jendroľ, Kardoš, 2009)

Let G be a simple 3-connected plane graph such that no two faces of degree at least 6 influence each other. Then

 $\chi_p(G) \le 10.$

Stanislav Jendroľ

Strong parity chromatic number

Definition

Let G be a plane graph. A face α of degree i of G is called to be isolated if there is no face β of degree at least i touching α .

Let G be a plane graph. A face α of degree i of G is called to be isolated if there is no face β of degree at least i touching α .

Theorem (Czap, Jendrol', Kardoš, 2009)

Let G be a 2-connected plane graph in which every face of degree ≥ 4 is isolated. Then

 $\chi_p(G) \le 12.$

Stanislav Jendroľ

Let G be a plane graph. A face α of degree i of G is called to be isolated if there is no face β of degree at least i touching α .

Theorem (Czap, Jendrol', Kardoš, 2009)

Let G be a 2-connected plane graph in which every face of degree ≥ 4 is isolated. Then

 $\chi_p(G) \le 12.$

Theorem (Czap, Jendrol', Kardoš, 2009)

Let G be a 3-connected plane graph in which any face of degree ≥ 5 is isolated. Then

$$\chi_p(G) \le 18.$$

Stanislav Jendroľ

Theorem (Czap, Jendrol', Kardoš, 2009)

Let G be a 3-connected plane graph in which any face of degree ≥ 6 is isolated. Then

 $\chi_p(G) \le 28.$

Theorem (Czap, Jendrol', Kardoš, 2009)

Let G be a 3-connected plane graph in which any face of degree ≥ 6 is isolated. Then

 $\chi_p(G) \le 28.$

Conjecture 1 (Czap, Jendrol', 2008)

There exists an absolute constant K such that for every simple $2\mathchar`-connected$ planar graph

 $\chi_p(G) \le K.$

Stanislav Jendroľ

P. J. Šafárik University, Košice

Thanks for your attention

Stanislav Jendroľ Facial strong parity colourings of plane graphs