Equivalence in terms of paths between inputs and outputs of a family of planar graphs

Toby Kenney

Univerzita Mateja Bela, Banská Bystrica, Slovakia

GEMS2009 29-06-2009

Toby Kenney The Path Relation on Rectangle Graphs

Rectangular Graphs Characterisation of Equivalence

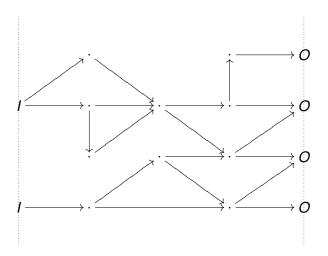
Rectangular Graphs

We will consider finite directed graphs embedded in a rectangle, with the following properties:

- A vertex is on the left edge if and only if it is not the terminal vertex of any edge.
- A vertex is on the right edge if and only if it is not the initial vertex of any edge.
- *G* is acyclic (i.e. it has no directed cycles, so the relation "There is a path from *u* to *v*." is a partial order).

Rectangular Graphs Characterisation of Equivalence

Example



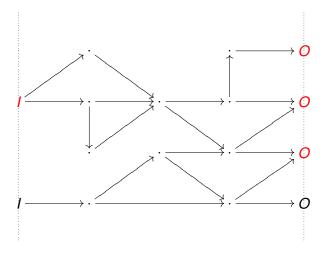
Rectangular Graphs Characterisation of Equivalence

The Path Relation

We will be interested in the relation between the vertices on the left edge and the vertices on the right edge, that relates u to v if and only if there is a directed path from u to v.

Rectangular Graphs Characterisation of Equivalence

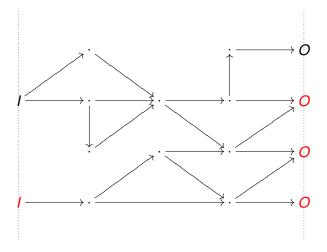
The Path Relation on the Example



Toby Kenney The Path Relation on Rectangle Graphs

Rectangular Graphs Characterisation of Equivalence

The Path Relation on the Example



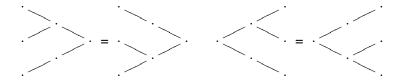
Toby Kenney The Path Relation on Rectangle Graphs

Rectangular Graphs Characterisation of Equivalence

Simplifications

- Rearrange so that all edges are directed from left to right.
- Split vertices, so that every vertex has at most 2 inputs and 2 outputs.

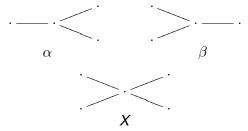
We see that all ways of splitting a vertex to be equivalent, i.e.



Rectangular Graphs Characterisation of Equivalence

Types of Vertices

After these simplifications, there will only be 3 types of vertices in the graph:

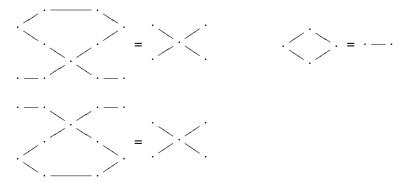


We can combine a β followed by an α into a single *X*, or we can split an *X* into a β followed by an α .

Rectangular Graphs Characterisation of Equivalence

Axioms

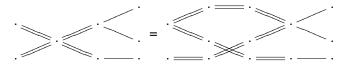
We will show that two graphs are equivalent if and only if we can get from one to the other using the following axioms (in addition to the axioms that the different ways of splitting a vertex are the same):



Factorisation and Axioms Natural Paths and Permutations The Bijection Between M_n and S_n

α, X, β -factorisation

Consider the equation:



Factorisation and Axioms Natural Paths and Permutations The Bijection Between M_n and S_n

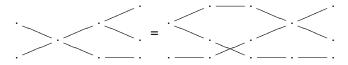
α, X, β -factorisation

Consider the equation:

Factorisation and Axioms Natural Paths and Permutations The Bijection Between M_n and S_n

α, X, β -factorisation

Consider the equation:

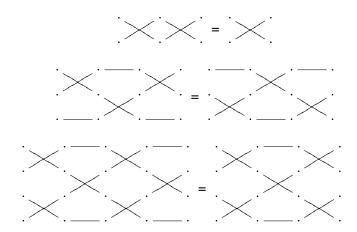


Lemma

Any graph is equivalent to a graph consisting of a collection of α , then a collection of X, then a collection of β .

Factorisation and Axioms Natural Paths and Permutations The Bijection Between M_n and S_n

Axioms for *X*

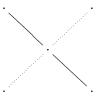


Factorisation and Axioms Natural Paths and Permutations The Bijection Between M_n and S_n

Natural Paths

Definition

When we have the *X*-component in a graph, we will say that the natural paths are the ones that go from the lower input to the higher output, or from the higher input to the lower output.

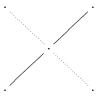


Factorisation and Axioms Natural Paths and Permutations The Bijection Between M_n and S_n

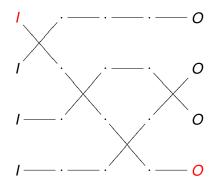
Natural Paths

Definition

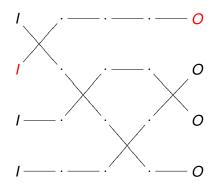
When we have the *X*-component in a graph, we will say that the natural paths are the ones that go from the lower input to the higher output, or from the higher input to the lower output.



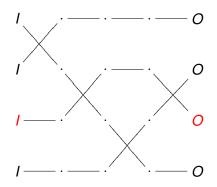
Permutations



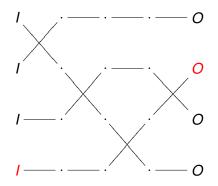
Permutations



Permutations

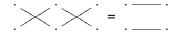


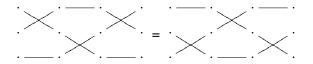
Permutations



Factorisation and Axioms Natural Paths and Permutations The Bijection Between M_n and S_n

Axioms for S_n





Factorisation and Axioms Natural Paths and Permutations The Bijection Between M_n and S_n

The Bijection Between M_n and S_n

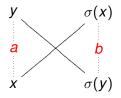
Fact

The monoid generated by the first 2 axioms for an X-graph on n elements, is in bijection with the group S_n of permutations of an n-element set.

X-graph monoid	Permutation group
	· · · · · · · · · · · · · · · · · · ·

The Function from Permutations to Relations Order-reversing Quadruples Theorems

The Function from Permutations to Relations



$\sigma \mapsto \{(a,b) | (\exists x \leqslant a)(\sigma(x) \ge b) \land (\exists y \ge a)(\sigma(y) \leqslant b) \}$

The Function from Permutations to Relations Order-reversing Quadruples Theorems

Order-reversing Quadruples

Lemma

If there are $a \leq b \leq c \leq d$ with $\sigma(d) \leq \sigma(c) \leq \sigma(b) \leq \sigma(a)$, then defining

$$\phi(\mathbf{x}) = \begin{cases} \sigma(\mathbf{c}) & \text{if } \mathbf{x} = \mathbf{b} \\ \sigma(\mathbf{b}) & \text{if } \mathbf{x} = \mathbf{c} \\ \sigma(\mathbf{x}) & \text{otherwise} \end{cases}$$

The graphs corresponding to σ and ϕ are equivalent using the *X*-axioms.

The Function from Permutations to Relations Order-reversing Quadruples Theorems

Order-reversing Quadruples

Lemma

If there are $a \leq b \leq c \leq d$ with $\sigma(d) \leq \sigma(c) \leq \sigma(b) \leq \sigma(a)$, then defining

$$\phi(\mathbf{x}) = \begin{cases} \sigma(\mathbf{c}) & \text{if } \mathbf{x} = \mathbf{b} \\ \sigma(\mathbf{b}) & \text{if } \mathbf{x} = \mathbf{c} \\ \sigma(\mathbf{x}) & \text{otherwise} \end{cases}$$

The graphs corresponding to σ and ϕ are equivalent using the *X*-axioms.

Corollary

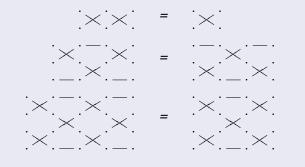
Any permutation is equivalent (under the X-axioms) to one with no order-reversing quadruples.

Introduction The Function from Permutations to Relations X-Generated Graphs Order-reversing Quadruples Main Theorem Theorems

For *X*-graphs

Theorem

If two X-graphs give the same path relation, then they are equivalent under the X-axioms.



Toby Kenney The Path Relation on Rectangle Graphs

The Function from Permutations to Relations Order-reversing Quadruples Theorems

For General Graphs

Theorem

If two graphs give the same path relation, then they are equivalent under the axioms.

