
A new family of distance regular covers of
complete graphs

GEMS’09
Tále, Slovakia

M. Klin1 Ch. Pech2

1Ben-Gurion University of the Negev, Beer-Sheva, Israel
2Johannes Kepler University Linz, Linz, Austria

July 2009



Outline
Introduction

Distance Regular Graphs

Antipodal Covers

Antipodal distance regular covers of Kn

Brouwer theorem

Godsil-Hensel theory

Brief survey of known constructions

First new example on 108 vertices

Regular covers

Godsil-Hensel matrices

Generalized Hadamard matrices

Pech recursive construction

Example on 108 vertices revisited

One more new example on 135 vertices

Further perspectives



Outline
Introduction

Distance Regular Graphs

Antipodal Covers

Antipodal distance regular covers of Kn

Brouwer theorem

Godsil-Hensel theory

Brief survey of known constructions

First new example on 108 vertices

Regular covers

Godsil-Hensel matrices

Generalized Hadamard matrices

Pech recursive construction

Example on 108 vertices revisited

One more new example on 135 vertices

Further perspectives



Introduction

▶ In 2008 we (i.e. K. and Pech), using a computer,
discovered two new antipodal distance regular graphs on
108 and 135 vertices, respectively (with new parameters).

▶ After long efforts it became possible to embed the example
on 108 vertices to a potentially wide infinite class of
distance regular graphs.

▶ Also progress with the understanding of the example on
135 vertices was achieved.



Goals of the presentation

▶ To provide first acquaintance with distance regular graphs,
and in particular antipodal graphs.

▶ To outline promising lines between algebraic and
topological group theory based on the use of voltage
groups.

▶ To present our new results.



▶ We were using the methodology of coherent configurations
and association schemes.

▶ It however will remain almost invisible in the course of the
lecture.

▶ We use computer packages:
▶ COCO (Faradžev, K. 1991),
▶ GAP,
▶ COCO II (Reichard, in development).
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Equitable partitions

An equitable partition of the vertex set V of a graph Γ = (V ,E)
is a partition

� = {C1, . . . ,Cl}

such that the number of neighbors in Cj of a vertex u in Ci is a
constant bi,j , independent of the selection of u ∈ Ci .



Equitable partitions (cont.)

▶ A significant origin of equitable partitions is orbits of an
arbitrary subgroup of the group Aut(Γ).

▶ Sometimes such partitions are called automorphic
equitable partitions.

▶ However, not each equitable partition is automorphic.



Example 1: Petersen graph P

6

7

8
9

10

1

2

34

5

P

“Internal” and “external” cycles form two cells of an equitable
partition.

5 5

2 2

1 1

Intersection diagram



Metric Decompositions

Given:
▶ A graph Γ,
▶ a vertex u of Γ.

Metric Decomposition:
▶ Cells of the metric partition of Γ with respect to u are the

vertices on the same distance i from u.
▶ If the diameter d = d(Γ) of Γ is finite, we have d + 1 cells.
▶ We denote by Γi(u) the subgraph of Γ induced by the

vertices on distance i from u.



Example 2: Pentagonal Prism
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7
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9
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1

2

34
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7

3

10

4

8

9

The metric decomposition (for u = 1) is not equitable:
e.g. Γ2(1) is not regular.



A connected regular graph Γ of valency k and diameter d is
called distance regular (briefly DRG) if for each vertex u the
metric partition

{{u}, Γ1(u), . . . , Γd(u)}
is equitable with the set of intersection numbers which does not
depend on the selection of u.

u Γ1(u)

a1

Γ2(u)

a2

Γd(u)

ad

k 1 b1 c2 b2 cd

Intersection diagram of a DRG



▶ A DRG of diameter d = 2 is called a strongly regular graph
(briefly SRG).

▶ A DRG Γ is called primitive if all distance i graphs Γi for
1 ≤ i ≤ d are connected. Otherwise Γ is called imprimitive.

▶ Note that {x , y} is an edge in Γi if and only if d(x , y) = i in
the graph Γ.



Example 1 (cont.)

1
2

6

5 4

3

97

8

10

Metric decomposition of the Petersen graph and its intersection
diagram:

1 3 6

2

3 1 2 1



▶ An imprimitive DRG Γ of diameter d is called antipodal if its
distance graph Γd is disconnected.

▶ In this case Γd is a disjoint union of n copies of the
complete graph Kr .

▶ The partition formed by the vertices of these n copies is
called the antipodal partition of Γ.



Theorem (D.H.Smith, A.Gardiner)
An imprimitive DRG is bipartite or antipodal (here “or” is not
exclusive).

Example 3: the 3-dimensional cube Q3

8

5

7

6

4 3

21

n = 4, r = 2

1 3 3 1
3 1 2 2 1 3

Q3 is bipartite and antipodal.
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Example 3 (cont.)
Another glance onto Q3:

5 6

21

3 4

87

▶ Antipodal cells are “metavertices”.
▶ The quotient graph is K4.
▶ Each edge of K4 is represented by 1-factor between two

metavertices.



▶ A graph Γ is called a cover of another graph Δ if there is a
surjection h : V (Γ) → V (Δ) that maps edges of Γ to edges
of Δ which is locally an isomorphism.

▶ The function h is called a covering of Δ.
▶ Preimages of vertices from Δ are called the fibres of the

covering.



▶ Each fibre induces an empty subgraph.
▶ Between two fibres there are either no edges, or the edges

between the two fibres form a perfect matching.
▶ For the covers of a connected graph all fibres have the

same size r .
▶ Let ker h be the equivalence relation defined by the fibres.
▶ Clearly, Γ/ ker h is isomorphic to Δ.



Example 4

1

2

3

4

5

6

7

8

9

10

11

12

▶ Γ is an antipodal cover of Δ = K3,3.
▶ The quotient graph K3,3 is a DRG.
▶ However, Γ is not a DRG.



▶ If the cover Γ of the graph Δ is distance regular, then Γ is
called antipodal distance regular cover of Δ.

▶ Note that in this case Δ is also a DRG.



Example 3 (cont.)
▶ We try in the role of Δ the Petersen graph.
▶ It is now convenient to recall its formal definition:

{3,5}

{2,3}

{2,4}
{1,4}

{1,5}

{1,2}

{4,5}

{1,3}{2,5}

{3,4}

▶ Vertices are 2-subsets of a 5-set.
▶ Adjacency means subsets are disjoint.



Example 5: Dodecahedron

1

2

34

5

6

7

8
9

10

11

12

13 14

15
16

17

18
19

20

1 3 6 6 3 1
3 1 2 1

1

1 1

1

1 2 1 3



We wish to observe that the dodecahedron D is an antipodal
cover of the Petersen graph P.

A “geometrical vision” may help.



▶ We try to provide a constructive approach to D.
▶ We know in advance that

Aut(D) ∼= A5 × Z2.

▶ Let us start from A5.
▶ We wish to present A5 as the automorphism group of an

auxiliary structure.



Pentagon C5

Aut(C5) = D5 consists only of even permutations.

Thus the orbit O of A5 on C5 has length 60/10 = 6.



The orbit O of 6 pentagons:
1

2

34

5

b 1

2

34

5

c

1

2

34

5

d

1

2

34

5

e

1

2

34

5

f

1

2

34

5

a



▶ Now we construct a design S = (P,ℬ).
▶ The set P = {a, b, c, d , e, f} of points is our orbit O of six

pentagons.
▶ Blocks are labeled by the edges of the complete graph K5

on the set [1, 5].
▶ Incidence is inclusion.



Blocks of S

{1,2} {a,d,f}

{1,3} {b,c,d}

{1,4} {b,e,f}

{1,5} {a,c,e}

{2,3} {a,b,e}

{2,4} {c,d,e}

{2,5} {b,c,f}

{3,4} {a,c,f}

{3,5} {d,e,f}

{4,5} {a,b,d}

We get a BIBD:
v = 6, b = 10, k = 3, r = 5, � = 2



▶ Now we construct a new graph D′ with the aid of the
auxiliary structure S as follows:

▶ D′ = (V ,E).
▶ V is the set of directed triangles on the block set of S.
▶ E.g. {x , y , z} gives

x

yz

x

yz

▶ Two triangles from V form an edge in E ⇐⇒ they share
one arc.



Easy observations

▶ D′ is an antipodal graph, each fibre consists of opposite
triangles.

▶ D′ is a DRG with the intersection diagram of D.
▶ The quotient graph of D′ is isomorphic to P.
▶ Aut(D′) ∼= A5 × ℤ2.
▶ D′ ∼= D.



One more significant message:

▶ The group ℤ2 of order 2 transposes each pair of opposite
triangles.

▶ In other words, ℤ2 acts semiregularly on the set of fibres.
▶ Such property will be crucial for us later on.
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▶ From now on and onwards the complete graph will serve
as the quotient graph Δ.

▶ The antipodal distance regular covers in this case have
diameter d equal to 3.

More examples!



Example 6: Icosahedron

To construct the icosahedron ℑ we use the same spirit as for D
and consider 12 directed pentagons from the same orbit of A5.

Adjacency:
two directed pentagons share a common arc.

We get a DRG:

1 5 5 1
5 1

2

2 2

2

1 5

Aut(ℑ) ∼= A5 × ℤ2.

ℑ is a 2-fold cover of K6.



Example 7: Line graph of the Petersen graph P

13,24

12,34

14,23

24,35
23,4525,34

14,35

15,34

13,45

14,25

12,45

15,24

13,25 15,23
12,35

1

2

3

4

5

1 4 8 2
4 1

1

2 1

2

1 4

3-fold cover of K5



Example 8: Johnson graph J(6, 3) on 20 vertices

Points:
3-subsets of 6-set.

Adjacency:
two 3-subsets share two common points.

Fibres:
subset and its complement.

1 9 9 1
9 1

4

4 4

4

1 9

2-fold cover of K10
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Brouwer theorem

▶ Suppose that Σ is an SRG with the parameters of a point
graph of a generalized quadrangle GQ(s, t).

▶ Assume that Σ allows a spread, that is a partition into
cliques of size (s + 1).

▶ Remove all edges in the spread from Σ.
▶ Then the remaining graph Γ is an antipodal distance

regular cover of Kst+1.
▶ Conversely, each cover with such parameters arises in this

way.



▶ A number of DRGs appear in this manner from the spreads
in known GQs.

▶ Example 7 is the smallest case.
▶ Godsil & Hensel (1992) were asking for an example of a

pseudogeometric SRG which provides an antipodal DRG
via the deletion of a spread.



▶ First such example was constructed by K. (1999) as a
Cayley graph over a suitable group of order 96.

▶ Nowadays many examples are available via the theory
developed by Wallis - Fon Der Flaass - Muzychuk.
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Lemma
An antipodal r -fold cover of Kn is antipodal distance regular if
and only if there exists a constant c2 such that any two
non-adjacent vertices from different fibres of the cover have
exactly c2 common neighbors.

Thus we will call an antipodal distance regular cover of Kn an
(n, r , c2)-cover.



Example 4 (cont.)

1

2

3

4

5

6

7

8

9

10

11

12

Vertices 1 and 11 have 0 common neighbors, while vertices 1
and 3 have 1 common neighbor.

Thus the constant c2 does not exist, therefore we have no DRG
cover.



The basic feasibility conditions for triples (n, r , c2) of
parameters:

(F1) (n, r , c2) are integers with 1 ≤ (r − 1)c2 ≤ n − 2.

(F2) If n is even, then c2 is even.

(F3) The multiplicities of the eigenvalues of the cover are
integers.



Denote:

� = n − 2 − rc2,

Δ = �2 + 4(n − 1).

Eigenvalues and multiplicities are:

Eigenvalue Multiplicity

n − 1 1

−1 n − 1

� =
� +

√
Δ

2
m� =

n(r − 1)�
� − �

� =
� −

√
Δ

2
m� =

n(r − 1)�
� − �



Many more additional conditions on the triples (n, r , c2) are
known from diverse sources.
A key to the classification is:

Theorem
For fixed r and � there are only finitely many feasible parameter
triples, unless � ∈ {−2, 0, 2}.



Thus four classes of parameters are distinguished:

I � = −2,

II � = 0,

III � = 2,

IV � /∈ {−2, 0, 2}.

Corollary
If � ∈ {−2, 2}, then Δ must be a square.



Starting examples repeated:

# Name n r c2 � Δ

3 3-cube 4 2 2 −2 16
6 Icosahedron 6 2 2 0 20
7 L(P) 5 3 1 0 16
8 J(6, 3) 10 2 4 0 36
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Main known infinite series

Construction Parameters Conditions Class
Mathon (q + 1, r , c) q = rc + 1 is a

prime power
II

Bondy (n, n − 2, 1) Projective plane
of order n − 1 ex-
ists

II

Thas-Somma (q2j , q, q2j−1) q is a prime
power

I

Brouwer (st + 1, s + 1, t − 1) spread in pseudo
GQ

all

Godsil-Hensel (p2i , pi−k , pi+k ) p is prime, 0 ≤
k < i

I

de Caen-Mathon-
Moorhouse

(22t , 22t−1, 2) I

de Caen-Fon Der
Flaass

(qd+1, qd , q) q = 2t I



There are some possible intersections between families,
combinations of constructions.

There is also a possibility that other series appear in an
unpublished paper of Brouwer, Godsil, Wilbrink.



Example 9: Mathon, q = 7, an (8, 3, 2)-cover

1 7 14 2
7 1

2

4 2

4

1 7

▶ Take Aut (Fano plane).
▶ It has cycle of length 7.
▶ Consider all cycles as undirected regular graph C7 of

valency 2.
▶ Get 24 such cycles.
▶ Two cycles are adjacent ⇐⇒ they share one edge.

Dual of the famous Klein map on a surface of genus 3.



Example 9: Mathon, q = 7, an (8, 3, 2)-cover (cont.)

11 5

12

3

174

8

6

1

13

7

24

2

21

9

10

19

22

20

18

14
23

15

16

� = 0,Δ = 28



Example 10: Exceptional (7, 6, 1)-cover

It appears as the subgraph of non-neighbors in the Moore
graph of valency 7 — that is, in the Hoffman-Singleton graph.

▶ Start from the auxiliary structure S as it appears in
Example 5.

▶ Let S be the design with block set consisting of the 10
remaining 3-element subsets of a 6-set.

▶ Observe that S ∼= S, and that Aut({S,S}) ∼= S5.
▶ Thus there are 6 different isomorphic copies of the

systems {S,S} sharing the same 6-element point set.
▶ Consider now a 7-element set, and remove from it an

arbitrary point and get 6 systems.
▶ Altogether we obtain 7 ⋅ 6 = 42 different copies of systems

of the form {S,S}.



Example 10: Exceptional (7, 6, 1)-cover (cont.)

▶ This is the point set of our forthcoming graph Γ.

▶ Define edges of Γ as follows:
systems {S,S} and {S′,S′} are adjacent ⇐⇒ they have
distinct isolated points and the design S shares with
design S

′ 0 or 5 common blocks.

▶ Here antipodal fibres are formed by systems, having the
same isolated point.

� = 5 − 6 = −1; Δ = 1 + 4 ⋅ 6 = 25.
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First new example on 108 vertices

Originally was obtained with the aid of a computer.

▶ We start from the incidence graph Σ of a resolvable
transversal design RT(6, 2; 3).

▶ Σ is a bipartite and antipodal DRG with diagram:

1 6 15 12 2
6 1 5 2 4 5 1 6



▶ The automorphism group of Σ is related to the famous
Schur multiplier of the group S6 (cf. lecture of Cai-Heng Li
at Ljubljana).

G = Aut(Σ) ∼= ℤ3.S6.ℤ2

is a group of order 3 ⋅ 6! ⋅ 2 = 4320.
▶ A point stabilizer is isomorphic to the symmetric group S5.
▶ We consider a new transitive action (G,Ω) of the group G

on the set Ω of cardinality 108 (cosets of a suitable
subgroup of order 40, aka flags of the incidence structure
RT(6, 2; 3)).



The computer package COCO tells us:
▶ rank(G,Ω) = 8;
▶ there is a number of merging association schemes formed

by the 2-orbits of (G,Ω);
▶ one of these schemes is so-called non-Schurian

association scheme M with 3 classes.

In addition, the computer package GAP tells us:
▶ M is a metric association scheme;
▶ in other words, M is generated in a canonical manner by

an antipodal DRG Γ with the parameters (36, 3, 12). Here
� = −2, Δ = 144.



The antipodal DRG Γ turns out to be new!

We wish to get a computer free interpretation of Γ.

This implies the real beginning of all our current story.
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▶ Let Γ be a connected antipodal distance regular cover of
Kn with index r .

▶ G = Aut(Γ).
▶ Let us consider the subgroup T ≤ G which stabilizes each

of the fibres of Γ (that is, T preserves each fibre as a set).

Lemma
Every element � ∈ T , � ∕= e is fixed point free.



Corollary

▶ ∣T ∣ ≤ r ,
▶ T acts semiregularly on the fibres.

If the group T has order r and thus acts regularly on each fibre,
then we say that Γ is a regular cover.

If in addition T is abelian or cyclic, then Γ is called abelian or
cyclic cover, respectively.



▶ The group T will be called the voltage group.
▶ Classical techniques from topological graph theory may

and should be applied to investigate regular covers.

(Godsil and Hensel developed elements of such techniques,
probably independently of topological graph theory.)

▶ A significant new input of them was to use group
representation theory in order to get additional feasibility
conditions for regular covers.

▶ An example of their result:

Let Γ be a cyclic r -fold cover of Kn with r > 2.
Then r divides n.
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Godsil-Hensel matrices

We slightly modify the original language of Godsil-Hensel

“Matrix-representation of symmetric arc functions”:
Let T be a voltage group, A = (ai,j) be a square matrix of order
n, where

▶ ai,j ∈ T ,

▶ T = T ∪ {0}, where 0 is an additional element distinct from
any element of T .

A will be called a formal matrix over T .



Godsil-Hensel matrices (cont.)

We call A = (ai,j) a covering matrix if
▶ ai,j = (aj,i)

−1 for all i , j ∈ {1, . . . , n},
▶ ai,i = 0 for all i ∈ {1, . . . , n},



Godsil-Hensel matrices (cont.)

We associate to the covering matrix A two graphs:
▶ the underlying graph Δ = ΔA with the vertex set

V (ΔA) = {1, 2, . . . , n},

and the edge set

E(ΔA) = {{i , j} ∣ ai,j ∕= 0};

▶ the cover of Γ = ΓA with the vertex set

V (ΓA) = {1, 2, . . . , n} × T ,

and the edge set

E(ΓA) = {{(i , g), (j , h)} ∣ ai,j ∕= 0, g ⋅ ai,j = h}.



Godsil-Hensel matrices (cont.)

It is easy to observe that the function

h : V (ΓA) → V (ΔA) defined as (i , g) 7→ i

is a covering function, thus the graph ΓA is a cover of the graph
ΔA.

Moreover, each regular cover of ΔA (up to isomorphism) with
the voltage group T can be obtained in this way.

If ΓA is an antipodal distance regular cover of ΔA, then we call
A the Godsil-Hensel matrix of this cover (briefly GH-matrix).



Theorem (Godsil-Hensel, 1992)
Let T be a voltage group and let A be a covering matrix of order
n over T .
Then A is a GH-matrix of a regular antipodal (n, r , c2)-cover of
Kn with the voltage group T if and only if

A2 = (n − 1)I + �A + c2T (J − I), (*)

where as before � = n − 2 − rc2.

(Here I and J are natural modifications of classical notations to
formal matrices. Moreover, matrix multiplication is performed in
the matrix-ring over the group-ring of T , and T denotes the sum
of all elements of T in the group-ring of T .)



▶ The class of all such matrices which satisfy (∗) will be
denoted by

GHM(T , n, r , c2).

▶ It is now a nice exercise to derive again a number of known
constructions in a unified manner with the aid of suitable
GH-matrices over suitable voltage groups T .
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We extend the concept of a conjugate transpose matrix A∗ onto
formal matrices.

Definition
Let T be a finite group, and let A = (ai,j) be a formal matrix of
order n over T such that A does not contain the entry 0.
Then we call A a generalized Hadamard matrix if for c = n/∣T ∣

we have:
AA∗ = A∗A = nI + cT (J − I).

We denote by gH(T , n) the set of all gH-matrices of order n
over T .



Remarks

(1) There are a few known ways to generalize the concept of a
Hadamard-matrix. We follow the way of Drake (1979).

(2) Our (additional) condition AA∗ = A∗A is essential, because
we do not require from T to be abelian.



Lemma
Let T be a finite group and let A be a covering matrix over T
with ΔA = Kn. Then the graph ΓA is a regular (n, r , c2)-cover if
and only if

(A + I)2 = nI + (n − rc2)A + c2T (J − I).

Proof.

(A + I)2 = A2 + 2A + I

= (n − 1)I + (n − 2 − rc2)A + c2T (J − I) + 2A + I

= nI + (n − rc2)A + c2T (J − I).

This slight modification turns out to be helpful for the case
� = −2 (that is n − rc2 = 0).



Corollary
Let T be a finite group with neutral element e and let A be a
covering matrix over T with ΔA = Kn.
Then the graph ΓA is a regular (n, r , c2) cover with � = −2 if and
only if A + I is a self-adjoint gH(T , n)-matrix (note that this
generalized Hadamard matrix has everywhere on its diagonal
the element e).



Remarks

(3) It is convenient to call self-adjoint gH-matrices with identity
diagonal skew gH-matrices.

(4) If T is a cyclic group of order 2, then we obtain the
equivalence of distance regular double covers of Kn to
regular two-graphs and in turn to classical skew Hadamard
matrices.
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The following breakthrough reached by Pech leads to new
infinite series of DRGs.

Theorem
Let T be a finite group, let H = (hi,j) be any gH(T , n). Let
 : {1, 2, . . . , n}2 → {1, 2, . . . , n2} be any bijection.
Define

RH = (r(i,j) ,(k ,l) )

according to
r(i,j) ,(k ,l) = hk ,j ⋅ h−1

i,l .

Then RH is a skew gH(T , n2).



Corollary
If there exists a gH(T , n) over a finite group T , then for all
t ∈ ℕ ∖ {0} there exists a skew gH(T , n2t

).

Therefore, starting from any gH(T , n)-matrix we obtain an
infinite series of regular covers of complete graphs.
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As illustration, we provide a computer free interpretation of our
new example on 108 vertices:

▶ Consider the following gH-matrix A of order 6 over ℤ3:

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

03 03 03 03 03 03

03 03 13 −13 −13 13

03 13 03 13 −13 −13

03 −13 13 03 13 −13

03 −13 −13 13 03 13

03 13 −13 −13 13 03

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

▶ Consider, for example, the function  : (i , j) 7→ 6(i − 1) + j



Get a skew gH-matrix B of order 36:

B =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1−1−1−1−1−1−1−1−1−1−1−1−1 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1−1−1−1−1−1−1−1−1−1−1−1−1
0 0 0 0 0 0−1−1−1−1−1−1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1−1−1−1−1−1−1
0 0 0 0 0 0−1−1−1−1−1−1−1−1−1−1−1−1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1−1−1−1−1−1−1−1−1−1−1−1−1 1 1 1 1 1 1 0 0 0 0 0 0
0 0−1 1 1−1 0 0−1 1 1−1 0 0−1 1 1−1 0 0−1 1 1−1 0 0−1 1 1−1 0 0−1 1 1−1
0 0−1 1 1−1 0 0−1 1 1−1 1 1 0−1−1 0−1−1 1 0 0 1−1−1 1 0 0 1 1 1 0−1−1 0
0 0−1 1 1−1 1 1 0−1−1 0 0 0−1 1 1−1 1 1 0−1−1 0−1−1 1 0 0 1−1−1 1 0 0 1
0 0−1 1 1−1−1−1 1 0 0 1 1 1 0−1−1 0 0 0−1 1 1−1 1 1 0−1−1 0−1−1 1 0 0 1
0 0−1 1 1−1−1−1 1 0 0 1−1−1 1 0 0 1 1 1 0−1−1 0 0 0−1 1 1−1 1 1 0−1−1 0
0 0−1 1 1−1 1 1 0−1−1 0−1−1 1 0 0 1−1−1 1 0 0 1 1 1 0−1−1 0 0 0−1 1 1−1
0−1 0−1 1 1 0−1 0−1 1 1 0−1 0−1 1 1 0−1 0−1 1 1 0−1 0−1 1 1 0−1 0−1 1 1
0−1 0−1 1 1 0−1 0−1 1 1 1 0 1 0−1−1−1 1−1 1 0 0−1 1−1 1 0 0 1 0 1 0−1−1
0−1 0−1 1 1 1 0 1 0−1−1 0−1 0−1 1 1 1 0 1 0−1−1−1 1−1 1 0 0−1 1−1 1 0 0
0−1 0−1 1 1−1 1−1 1 0 0 1 0 1 0−1−1 0−1 0−1 1 1 1 0 1 0−1−1−1 1−1 1 0 0
0−1 0−1 1 1−1 1−1 1 0 0−1 1−1 1 0 0 1 0 1 0−1−1 0−1 0−1 1 1 1 0 1 0−1−1
0−1 0−1 1 1 1 0 1 0−1−1−1 1−1 1 0 0−1 1−1 1 0 0 1 0 1 0−1−1 0−1 0−1 1 1
0 1−1 0−1 1 0 1−1 0−1 1 0 1−1 0−1 1 0 1−1 0−1 1 0 1−1 0−1 1 0 1−1 0−1 1
0 1−1 0−1 1 0 1−1 0−1 1 1−1 0 1 0−1−1 0 1−1 1 0−1 0 1−1 1 0 1−1 0 1 0−1
0 1−1 0−1 1 1−1 0 1 0−1 0 1−1 0−1 1 1−1 0 1 0−1−1 0 1−1 1 0−1 0 1−1 1 0
0 1−1 0−1 1−1 0 1−1 1 0 1−1 0 1 0−1 0 1−1 0−1 1 1−1 0 1 0−1−1 0 1−1 1 0
0 1−1 0−1 1−1 0 1−1 1 0−1 0 1−1 1 0 1−1 0 1 0−1 0 1−1 0−1 1 1−1 0 1 0−1
0 1−1 0−1 1 1−1 0 1 0−1−1 0 1−1 1 0−1 0 1−1 1 0 1−1 0 1 0−1 0 1−1 0−1 1
0 1 1−1 0−1 0 1 1−1 0−1 0 1 1−1 0−1 0 1 1−1 0−1 0 1 1−1 0−1 0 1 1−1 0−1
0 1 1−1 0−1 0 1 1−1 0−1 1−1−1 0 1 0−1 0 0 1−1 1−1 0 0 1−1 1 1−1−1 0 1 0
0 1 1−1 0−1 1−1−1 0 1 0 0 1 1−1 0−1 1−1−1 0 1 0−1 0 0 1−1 1−1 0 0 1−1 1
0 1 1−1 0−1−1 0 0 1−1 1 1−1−1 0 1 0 0 1 1−1 0−1 1−1−1 0 1 0−1 0 0 1−1 1
0 1 1−1 0−1−1 0 0 1−1 1−1 0 0 1−1 1 1−1−1 0 1 0 0 1 1−1 0−1 1−1−1 0 1 0
0 1 1−1 0−1 1−1−1 0 1 0−1 0 0 1−1 1−1 0 0 1−1 1 1−1−1 0 1 0 0 1 1−1 0−1
0−1 1 1−1 0 0−1 1 1−1 0 0−1 1 1−1 0 0−1 1 1−1 0 0−1 1 1−1 0 0−1 1 1−1 0
0−1 1 1−1 0 0−1 1 1−1 0 1 0−1−1 0 1−1 1 0 0 1−1−1 1 0 0 1−1 1 0−1−1 0 1
0−1 1 1−1 0 1 0−1−1 0 1 0−1 1 1−1 0 1 0−1−1 0 1−1 1 0 0 1−1−1 1 0 0 1−1
0−1 1 1−1 0−1 1 0 0 1−1 1 0−1−1 0 1 0−1 1 1−1 0 1 0−1−1 0 1−1 1 0 0 1−1
0−1 1 1−1 0−1 1 0 0 1−1−1 1 0 0 1−1 1 0−1−1 0 1 0−1 1 1−1 0 1 0−1−1 0 1
0−1 1 1−1 0 1 0−1−1 0 1−1 1 0 0 1−1−1 1 0 0 1−1 1 0−1−1 0 1 0−1 1 1−1 0

⎞

⎟
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⎟
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⎟
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⎟
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⎟
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⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠



▶ Matrix B is a skew gH(ℤ3, 36).
▶ Hence B − I is a GHM(ℤ3, 36, 3, 12),
▶ We obtain a regular (36, 3, 12)-cover.

▶ To the best of our knowledge, the series of DRGs on 3 ⋅ 62k

vertices is new.
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One more new example on 135 vertices

This graph Γ originally was also obtained with the aid of the
computer package COCO.

Aut(Γ) ∼= ℤ3.S6.ℤ2

(It is isomorphic to the automorphism group of the DRG on 108
vertices that was described above.)
We were trying to get a similar interpretation of Γ in terms of
formal matrices.



We start from a very famous incidence structure
GQ(2, 2) = W2, that is the generalized quadrangle of order 2.
It has many alternative names:

▶ Sylvester system of duads and synthemes;
▶ Cremona-Richmond configuration;
▶ Tutte’s 8-cage graph.



▶ The Levi (incidence) graph L(W2) is bipartite, therefore
instead of traditional use of adjacency matrices we use
incidence matrices.

▶ The well-known Foster graph F on 90 vertices is a 3-fold
regular cover of L(W2).

▶ It is an antipodal bipartite DRG of diameter 8.
▶ We consider also the graph F3, that is the distance-3 graph

of the DRG F .
▶ The graph F3 turns out to be a 3-fold cover of the

complement of L(W2) to L(W2).
▶ We present both F and F3 with the aid of formal matrices

and combine these matrices.



12 14 13 16 15 12 12 14 14 16 15 16 15 13 13
34 23 24 25 26 36 35 26 25 23 23 24 24 26 25
56 56 56 34 34 45 46 35 36 45 46 35 36 45 46

56 × × ×
34 × × ×
12 × × ×
14 × × ×
23 × × ×
24 × × ×
13 × × ×
25 × × ×
16 × × ×
15 × × ×
26 × × ×
36 × × ×
45 × × ×
46 × × ×
35 × × ×

The incidence table of W2



12 14 13 16 15 12 12 14 14 16 15 16 15 13 13
34 23 24 25 26 36 35 26 25 23 23 24 24 26 25
56 56 56 34 34 45 46 35 36 45 46 35 36 45 46

56 0 0 0
34 0 0 0
12 0 0 0
14 0 0 0
23 0 0 0
24 0 0 0
13 0 0 0
25 0 1 −1
16 0 −1 1
15 0 1 −1
26 0 −1 1
36 0 −1 1
45 0 1 −1
46 0 −1 1
35 0 1 −1

The collapsed incidence matrix of F



12 14 13 16 15 12 12 14 14 16 15 16 15 13 13
34 23 24 25 26 36 35 26 25 23 23 24 24 26 25
56 56 56 34 34 45 46 35 36 45 46 35 36 45 46

56 0 0 0 0 0 0 0 0 0 0 0 0
34 0 0 0 0 −1 1 −1 1 1 −1 1 −1
12 0 0 0 0 1 −1 1 −1 −1 1 −1 1
14 0 0 −1 1 1 −1 0 0 1 −1 −1 1
23 0 0 1 −1 −1 1 0 0 −1 1 1 −1
24 0 0 −1 1 −1 1 −1 1 1 −1 0 0
13 0 0 1 −1 1 −1 1 −1 −1 1 0 0
25 0 1 −1 0 −1 1 1 −1 0 1 0 −1
16 0 −1 1 0 1 −1 0 1 −1 1 0 −1
15 0 1 −1 0 1 −1 −1 0 1 −1 1 0
26 0 −1 1 0 −1 1 −1 0 1 0 −1 1
36 0 −1 1 1 −1 0 −1 1 0 1 −1 0
45 0 1 −1 −1 1 0 0 −1 1 0 1 −1
46 0 −1 1 −1 1 0 1 0 −1 −1 0 1
35 0 1 −1 1 −1 0 1 0 −1 −1 0 1

The collapsed incidence matrix of F3



12 14 13 16 15 12 12 14 14 16 15 16 15 13 13
34 23 24 25 26 36 35 26 25 23 23 24 24 26 25
56 56 56 34 34 45 46 35 36 45 46 35 36 45 46

56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
34 0 0 0 0 0 0 0 −1 1 −1 1 1 −1 1 −1
12 0 0 0 0 0 0 0 1 −1 1 −1 −1 1 −1 1
14 0 0 0 −1 1 1 −1 0 0 0 0 1 −1 −1 1
23 0 0 0 1 −1 −1 1 0 0 0 0 −1 1 1 −1
24 0 0 0 −1 1 −1 1 −1 1 1 −1 0 0 0 0
13 0 0 0 1 −1 1 −1 1 −1 −1 1 0 0 0 0
25 0 1 −1 0 0 −1 1 1 1 −1 0 1 0 −1 −1
16 0 −1 1 0 0 1 −1 0 1 −1 −1 1 1 0 −1
15 0 1 −1 0 0 1 −1 −1 0 1 1 −1 −1 1 0
26 0 −1 1 0 0 −1 1 −1 −1 0 1 0 −1 1 1
36 0 −1 1 1 −1 0 0 −1 −1 1 0 1 1 −1 0
45 0 1 −1 −1 1 0 0 0 −1 1 1 0 1 −1 −1
46 0 −1 1 −1 1 0 0 1 0 −1 −1 −1 0 1 1
35 0 1 −1 1 −1 0 0 1 1 0 −1 −1 −1 0 1

The combined collapsed incidence matrices form a formal
matrix M.



▶ The matrix M is a formal ∣P∣ × ∣ℬ∣-matrix, where P and ℬ
are the point- and the line-set of W2, respectively.

▶ Let us for simplicity refer to the entries by pairs (P, l) where
P ∈ P and l ∈ ℬ.

▶ Thus
M = (mP,l)P∈P,l∈ℬ.

Now we define a formal 45 × 45 matrix A from W . the rows
and columns will be indexed by the 45 flags of W2.

▶ In particular

A = (a(P1,l1),(P2,l2)), where a(P1,l1),(P2,l2) := m(P2,l1) ⋅ m−1
(P1,l2)

.

Theorem

▶ The formal matrix A is a GHM(ℤ3; 45, 3, 12).
▶ Therefore this matrix gives rise to a regular

(45, 3, 12)-cover of K45 with the voltage group ℤ3.

Remark:
Still the computer was asked for the proof.
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Further perspectives

▶ Inspection of known gH-matrices with the goal to get new
DRGs.

▶ Careful analysis and comparison of known constructions
on antipodal covers of Kn.

▶ More links with topological graph theory.
▶ Move example on 135 vertices to a possible generic

construction.
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