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Definition and examples

After Jajcay and Širáň, we say that a permutation σ : G → G is

a skew-morphism of a group G with a power function π : G →
{0,1, . . . ,ord(σ)− 1} if

• σ(1G) = 1G ,

• σ(xy) = σ(x)σπ(x)(y) for all x, y ∈ G.

EXM: every automorphism of G is a SM of G with π(x) = 1 for all

x ∈ Zn.
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EXM: G = Z6 = {0,1,2,3,4,5}.

The permutation

σ(x) =

{
x if x is even

x⊕ 2 if x is odd

is a SM of Z6 with power function

π(x) =

{
1 if x is even
2 if x is odd

σ(x⊕ y) = σ(x)⊕ σ±(y).
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Motivation

• A group G admits a regular Cayley map iff G has a skew-morphism

σ with an orbit T such that 〈T 〉 = G, and T = T−1 (Jajcay and Širáň,

2002)

• A classification of regular embeddings of Kn,n is equivalent to find

the set of SM’s σ of Zn s. t. ord(σ) | n, and π(x) = −σ−x(−1) for all

x ∈ Zn (Feng, Kwak, Nedela).

(Du, Jones, Kwak, Kwon, Nedela, Škoviera, Zlatoš 2002-2007)
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Skew product group

Prop. (i) Let σ be a SM of G, GL is the left regular repr. of G. Then

P = 〈GL, σ〉 is a permutation group in Sym(G) such that P1G
= 〈σ〉.

(ii) Let P ≤ Sym(G) such that GL ≤ P , and P1G
is a cyclic group.

Then any generator of P1G
is a SM of G.

After Conder, Jajcay and Tucker, we call 〈GL, σ〉 the skew product

group over G induced by σ.
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Action on a generating orbit

Prop. If σ is a SM of G, and T is an orbit of σ, 〈T 〉 = G, then σ acts

regularly on T .

In particular, for the orbit T in the above proposition, ord(T ) = |T |.
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S-rings induced by SM’s

S-rings over G are certain subalgebras of the group algebra QG.

Some notations: for S ⊂ G, denote S =
∑

x∈G axx ∈ QG such that
ax = 1 if x ∈ S and x = 0 if x /∈ S (such elements are called simple
quantities). The transpose of an element η =

∑
x∈G axx in QG is the

element ηt =
∑

x∈G axx−1.

An S-ring over G is a subalgebra A of QG which satisfies:

• A has a basis of elements T1, . . . , T r for subsets Ti of G,

• T1 = {1G}, Ti ∩ Tj = ∅ for all i, j, and T1 ∪ · · · ∪ Tr = G,

• for every i ∈ {1, . . . , r} there exists j ∈ {1, . . . , r} such that T t
i = T j.

Ti: basic sets, r: the rank.
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S-rings arise from permutation groups as follows: Let P be of a rank

r permutation group in Sym(G). Suppose GL ≤ P , and let P1G
be the

stabilizer of 1G in P . Denote by T1G
= {1G}, T2 . . . , Tr the the orbits

of P1G
.

Then T1, . . . , Tr are the basic sets of a rank r S-ring over G (Schur,

1933) – also called the transitivity module of G induced by P1G
.

Every SM σ of G induces an S-ring over G, we denote this by Aσ.
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S-rings over cyclic groups have been developed much (Klin, Pöschel,

Muzychuk, Leung, Ma, Man, Evdokimov and Ponomarenko).

The following related question seems to be natural.

Question. What are the S-rings over cyclic groups which are induced

by skew-morphisms?

Theorem. Let n = p
e1
1 · · · per

r , n is odd, (pi, pj − 1) = 1 for all i, j.

Then for every SM σ of Zn there exists an automorphism α of Zn s.

t. Aσ = Aα, α ∈ Aut(Zn).
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SM’s with trivial radicals

Motivated by Evdokimov and Ponomarenko, we define the radical of

a SM σ of Zn as

rad(σ) = {x ∈ Zn | T + x = T},
where T is an orbit of σ, 〈T 〉 = Zn.

rad(σ) ≤ Zn (does not depend on the orbit T ).

In fact, rad(σ) is the same as rad(Aσ).

10



Prop. If σ is a SM of Zn. If rad(σ) = 1, then σ is in Aut(Zn).

This follows directly from a structure theorem of S-rings over cyclic

groups with trivial radical (Evdokimov and Ponomarenko, 2002).

As corollaries, we obtain that

• (ord(σ), n) = 1 ⇒ σ ∈ Aut(Zn),

• ord(σ) | nϕ(n).
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SM’s of prime order

Prop. Let σ be a SM of Zn, ord(σ) = p, p is a prime, σ is not in

Aut(Zn), and let π be the power function of σ. Then

• n = pm, d = (m, p− 1) > 1, and

• there are a, b ∈ Zp, a 6= 0, b 6= 1, bd = 1, such that

σ(xm + y) =
(
x + a(1 + b + · · ·+ by−1)

)
m + y, x ∈ Zp, y ∈ Zm.

and π(z) = bz, z ∈ Zn.

12



EXM: Let n = pq, (n, ϕ(n)) = 1, σ be a SM of Zpq.

Suppose that rad(σ) = 〈q〉. Then ord(σ) = pl, and the 〈q〉-cosets form

a block system of G = 〈1L, σ〉. The kernel of G permuting the blocks

is the group K = 〈qL, σl〉. Thus the stabilizer of 0 in KZL is 〈σl〉, so

σl is a SM of order p, σl is not in Aut(Zn), a contradiction to the

previous Prop.

Therefore rad(σ) = 1, σ is in Aut(Zpq).

Letting Zpq = Zp × Zq, Aut(Zpq) = Aut(Zp) × Aut(Zq), we have σ =

σ1σ2, σ1 ∈ Aut(Zp) and σ2 ∈ Aut(Zq).
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Decomposition Theorem

Let n = n1n2, (n1, n2) = 1, Zn = Zn1 × Zn2. Let σ1 be a SM of Zn1.

The the mapping

σ̂1 : (x1, x2) 7→ (σ1(x1), x2)

is a SM of Zn, this we call the extension of σ1 to Zn.

Extension σ̂2 is defined analogously.

We say that two natural numbers n1 and n2 are disjoint if

(n1ϕ(n1), n2ϕ(n2)) = 1.

Note that, if n1 and n2 are disjoint, then σ̂1 σ̂2 is a SM of Zn.
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Theorem. Let n = n1n2, n1 and n2 are disjoint. Then every SM of
Zn is of the form σ̂1 σ̂2, where σi is a SM of Zni.

We can interpret the theorem in terms of a digraph (which also occurs
in the formula of Jones, 2007, enumerating regular embeddings of
Kn,n.)

EXM: n = 3× 5× 7× 11× 13× 17.

.

3

7 13 5 11 17

ϕs(n) = ϕs(3× 7× 13)× ϕs(5× 11)× ϕs(17)
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n = pm, p is a prime

Lem. Let σ be a SM of Zpn, p is a prime. If ord(σ) = pv, then σp is

also a SM of Zpn.

Therefore, if G is a skew product p-group, then every element in G0

is a SM. Enumeration in this case is reduced to finding the poset of

skew product p-groups.

Note that, if p = 2, then all SM’s are found this way.
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Lem. Let σ be a SM of Zpn of order pvd, d > 1, d | (p − 1) (p > 2).

Then

(1) the Sylow-p-subgroup P of 〈τ, σ〉 is a skew product p-group.

(2) P / 〈τ, σ〉, hence σpv
acts by conjugation on P as an automorphism

of order d.

Note that,

• Skew product p-groups are metacyclic if p > 2 (Huppert, 1953).

• A nonsplit metacyclic p-group is also a p-group (Menegazzo, 1993),

hence the group P in the above lemma must be a split metacyclic

p-group.

• The automorphism groups of split metacyclic p-groups are explicitely

described by Bidwell and Curran, 2006.
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We have the following strategy of enumerating SM’s of Zpn:

• Determine the poset of skew product p-groups.

• If p > 2, then determine those groups which are split meta-cyclic

p-groups.

• If p > 2 and P is a split metacyclic skew product p-group, then

describe a correspondence between skew product groups G with P =

Sylp(G) and Aut(P ).

• Derive formula for ϕs(pn).
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Skew product p-groups, p > 2

Let α be the automorphism of Zpn defined by α(x) = (p + 1)¯ x.

For i, j ∈ {0,1, . . . , pn−1−1}, define the permutations βj, σi,j in Sym(Zpn)

as βj(0) = 0, and if x 6= 0,

βj(x) = 1⊕ (p + 1)j ⊕ (p + 1)2j ⊕ · · · ⊕ (p + 1)(x−1)j, and

σi,j = βj
−1αiβj, i ∈ {0,1, . . . , pn−1 − 1}.

Lem. Every permutation σi,j is a SM of Zpn.
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Prop. If σ is a SM of Zn of p-power order and p > 2, then σ = σi,j

for some i, j ∈ Zpn.

Proof First, let ord(σ) = pn−1. Let G = 〈1L, σ〉. There exists a cyclic

subgroup N/G, G/N is cyclic. Thus |G/N | = max{ord(N1L),ord(Nσ)} =

max{ord(N1L), pn−1} = pn−1, as 〈pn−1〉 ≤ Z(G) ∩ N . Also, |N | = pn,

hence N is a regular normal subgroup. Then Nβ = ZL, σβ = αi. From

these β = βj, σ = σi,j.

The proof is completed by showing that every skew product p-group of

order less then p2n−1 is properly contained in a skew product p-group.
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Prop. σi,j = σi′,j′ iff i = i′ and j ≡ j′ (mod pn−2/(pn−i, i)).

EXM: The poset of Skew product 3-groups over Z81, label (i, j) iden-
tifies group 〈1L, σi,j〉:

.

(3,0)

(9,0)

(0,0)

(3,1) (3,2)(3,0)

(1,0) (1,6)(1,3) (1,1) (1,4) (1,7) (1,2) (1,5) (1,8)

The number of SM’s of Zpn of p-power order is p2n−2+p
p+1 .
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Thank you!
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