

On tetravalent bicirculants

Boštjan Kuzman

Joint work with I. Kovacs, A. Malnič and S. Wilson

July 2nd, 2009 GEMS 2009, Tale, Slovakia.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

Let X be a connected finite simple graph on 2n vertices. Then X is a *bicirculant* $\iff \exists \alpha \in Aut(X)$ with 2 orbits of size n.

Notation: $X \in BC_n[L, M, R]$, where

$$V(X) = \{u_0, \ldots, u_{n-1}, v_0, \ldots, v_{n-1}\}, i \in \mathbb{Z}_n$$

$$\mathsf{E}(X) = \bigcup_{i \in \mathbb{Z}_n} \begin{cases} (u_i, u_{i+t}), & t \in L, \\ (u_i, v_{i+t}), & t \in M, \\ (v_i, v_{i+t}), & t \in R, \end{cases}$$

(日) (同) (三) (三) (三) (○) (○)

with $L, M, R \subseteq \mathbb{Z}_n, M \neq \emptyset, 0 \notin L \cup R$. and $\alpha \colon \begin{cases} u_i \mapsto u_{i+1} \\ v_i \mapsto v_{i+1} \end{cases} \in \operatorname{Aut}(X) \text{ implies } L = -L, R = -R. \end{cases}$

Example $(K_{4,4})$

 $BC_4[\emptyset, \{0, 1, 2, 3\}, \emptyset]$

 $\mathsf{BC}_4[\{\pm 1\}, \{0,2\}, \{\pm 1\}]$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Example (Wreath graphs)

For
$$n \ge 3$$
, $C_n[2K_1] \cong \begin{cases} BC_n[\{\pm 1\}, \{0, 2\}, \{\pm 1\}] & \forall n, \\ BC_n[\emptyset, \{0, 1, \frac{n}{2}, \frac{n}{2} + 1\}, \emptyset] & n \text{ even} \end{cases}$

▲□>
▲□>
■>
■>
■>
■>
●

Example (Dihedrants)

Any $X = Cay(D_n, S)$ is a bicirculant. The reverse is not true.

However, if L = R, then

$$BC_n[L, M, R] \cong Cay(D_n, \{a^i, ba^j \mid i \in L, j \in M\}).$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Problem: Classify all 4-valent edge transitive bicirculants. Thus, describe such $BC_n[L, M, R]$ in terms of n, L, M, R.

Motivation:

- Frucht, Graver and Watkins have classified all ET generalized Petersen graphs.
- The results of Pisanski and Marušič later completed the classification of all cubic ET bicirculants.

General strategy: deal with cases |M| = 1, 2, 3, 4 separately.

Note that we may treat these graphs as regular \mathbb{Z}_n -covers of one of the following *pregraphs* on two vertices:

However, for |M| = 1, 3, no 4-valent $BC_n[L, M, R]$ is edge transitive.

Case |M| = 2: Rose Windows

At GEMS '97, S. Wilson presented some examples of regular maps and their underlying graphs. Inspired by three of those, he defined a family of *the Rose Window graphs*:

$$RW_n(r,m) = BC_n[\{\pm 1\}, \{0,m\}, \{\pm r\}].$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem (Kovacs, Kutnar, Marušič)

Let X be an edge transitive Rose Window graph. Then X is isomorphic to $BC_n[L, M, R]$, $n \ge 3$, where $L = \{\pm 1\}$, $M = \{0, m\}$, $R = \{\pm r\}$, and one of the following applies for n, m, r:

#	n	m	r	Conditions
Ι.	any	2	1	/
11.	2 <i>k</i>	<i>k</i> + 2	k+1	/
III.	2 <i>k</i>	2 <i>y</i>	$\begin{cases} 1 \mod 2 \\ 1 \mod k \end{cases}$	$y^2 \equiv \pm 1 \mod k$
IV.	12 <i>k</i>	2 + 3y	1 + 9y	$y = \pm k$

Proof.

Core_H $G \equiv$ the largest normal subgroup of G, contained in $H \leq G$. Take $G = \operatorname{Aut}(X)$, $H = \langle (u_0 \dots u_{n-1})(v_0 \dots v_{n-1}) \rangle$ and study cases $|\operatorname{Core}| = 1, 1 < |\operatorname{Core}| < n/2, |\operatorname{Core}| = n/2$.

Now define the generalized Rose Window graphs as

$$GRW_n(I, m, r) = BC_n[\{\pm I\}, \{0, m\}, \{\pm r\}].$$

Theorem (Kovacs, K., Malnič, Wilson)

Every ET generalized Rose Window graph is isomorphic to some Rose Window graph.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Thus, case |M| = 2 is solved.

Case |M| = 4: Bipartite dihedrants

Observe that

$$BC_n[\emptyset, \{0, x, y, z\}, \emptyset] \cong Cay(D_n, \{b, ba^x, ba^y, ba^z\},$$

so these graphs are bipartite dihedrants with bipartition sets $\{1, a, \ldots, a_{n-1}\}$ and $\{b, ba, \ldots, ba_{n-1}\}$, where $D_n = \langle a, b \mid a^n = b^2 = (ab)^2 = 1 \rangle$.

A Cayley graph X = Cay(G, S) is called *normal*, if the right regular representation R(G) is normal in Aut(X).

Example (Wreath graph)

For $n \ge 4$ even, $C_n[2K_1] \cong Cay(D_n, \{b, ba, ba^{n/2}, ba^{n/2+1}\})$ is an AT non-normal bipartite dihedrant.

Note that $\tau = (1a^{n/2}) \in Aut(X)$, but $\tau R(a)\tau^{-1} \notin R(G)$.

For $n \ge 3$ odd, $C_n[2K_1] \cong Cay(D_n, \{b, ba^2, a, a^{n-1}\})$ is an also AT non-normal dihedrant, but not bipartite.

Theorem (Kovacs, K., Malnič)

Let $X = Cay(D_n, S)$ be a connected 4-valent arc transitive dihedrant. If X is non-normal and bipartite (in the above sense), then X is isomorphic to $C_n[2K_1]$ with $n \ge 4$ even, or to one of the five sporadic graphs:

▶ n = 5, $S = \{b, ba, ba^2, ba^3\}$,

▶
$$n = 7$$
, $S = \{b, ba, ba^2, ba^4\}$,

•
$$n = 13$$
, $S = \{b, ba, ba^3, ba^9\}$

•
$$n = 14$$
, $S = \{b, ba, ba^4, ba^6\}$

•
$$n = 15$$
, $S = \{b, ba, ba^3, ba^7\}$

Sketch of proof

Sketch of proof:

- Non-normal 4V AT BP Dih are not 1-regular.
- ▶ For X non-normal 4V AT BP Dih we define the auxiliary circulant

$$AuxCirc(X) = \frac{1}{2}X^2 \approx Cay(Z, T),$$

where $T = \{a^{\pm x}, a^{\pm y}, a^{\pm z}, a^{\pm (x-y)}, a^{\pm (y-z)}, a^{\pm (z-x)}\}.$

• AuxCirc(X) = Y or $Y_1 + Y_2$ for some orbital graphs, defined via the action of G_1 on T. According to their properties we assign to each X an uniformity index (r_1, r_2) and analyze possible cases for $1 \le r_1, r_2 \le 4$.

 $AuxCirc(C_8[2K_1]) = C_4[2K_1] + 4K_2.$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへぐ

 $C_n[2K_1]$ graphs have uniformity index (4,2) for $n \ge 6$ even.

Case analysis for uniformity index (r_1, r_2) :

►
$$r_1 \neq r_2$$
:

- $r_1 = 4 \neq r_2 \implies X \approx C_n[2K_1], n \ge 6$ even.
- ▶ $r_1 = 3 \neq r_2$ and $r_1 = 2 \neq r_2$ are excluded by algebraic arguments.
- r₁ = 1 ≠ r₂ is excluded by application of the result of Baik, Feng, Sim and Xu on non-normal Cayley graphs of abelian groups.

▶
$$r_1 = r_2 \neq 1$$
:

$$r_1 = r_2 = 4 \implies X \approx K_{4,4} = C_4[2K_1].$$

$$\bullet \ r_1 = r_2 = 3 \implies X \approx K_{5,5} - 5K_2.$$

• $r_1 = r_2 = 2 \implies X \approx NonincidenceGraph(PG(2,2)).$

▶ $r_1 = r_2 = 1$:

The classification of AT circulants by I. Kovacs gives a description of connection sets for the orbital circulants in AuxCirc(X). We use this to show that X/J for some J < Z increases uniformity index. Further analisys gives 3 more possible X.

Case |M| = 4: Normal case

If ET $X = BC_n[\emptyset, M, \emptyset]$ is normal, then G_1 acts transitively as affine simmetries on $M = \{0, x, y, z\}$ as either \mathbb{Z}_4 or \mathbb{Z}_2^2 .

Algebraicaly, this yields 2 sets of equations, describing x, y, z.

- \mathbb{Z}_4 One infinite family of solutions.
- \mathbb{Z}_2^2 Two infinite families of solutions (some/none of x, y, z are invertible).

Theorem (Kovacs, K., Malnič, Wilson)

Let X be an edge transitive tetravalent bicirculant. Then X is isomorphic to $BC_n[L, M, R]$, $n \ge 3$, where

1. $L = \{\pm 1\}$, $M = \{0, m\}$, $R = \{\pm r\}$, and one of the following applies for n, m, r:

#	n	т	r	Conditions
Ι.	any	2	1	/
II.	2 <i>k</i>	<i>k</i> + 2	k+1	
III.	2 <i>k</i>	2 <i>y</i>	$\begin{cases} 1 \mod 2 \\ 1 \mod k \end{cases}$	$y^2 \equiv \pm 1 \mod k$
IV.	12 <i>k</i>	2 + 3 <i>y</i>	1 + 9y	$y = \pm k$

2. $L = R = \emptyset$, $M = \{0, x, y, z\}$, and one of the following applies for n, x, y, z:

#	n	x, y, z	Conditions
Ι.	5	1, 2, 3	/
Π.	7	1, 2, 4	/
III.	13	1, 3, 9	/
IV.	14	1,4,6	
V.	15	1, 3, 7	
VI.	2 <i>k</i>	1, k, k+1	
VII.	any	$1, k + 1, k^2 + k + 1$	$(k+1)(k^2+1) \equiv 0 \mod n$
VIII.	any	1, k, 1-k	$2k(1-k) \equiv 0 \mod n$
IX.	krst	r,(rs'+t)s,(rt'+s+rs)t	1 < r, s, t pairwise coprime, etc.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

To do:

- Determine the overlap of different families.
- Identify dihedrants within case |M| = 2.
- Identify the isomorphic graphs within the same family.
- Enumerate 4V ET BC class (up to graph isomorphism).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Thank You for attention!