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I “I don’t know what’s in the university promotions regulations,
but as far as I know in this particular case an early promotion
is not possible.

I “I’d like to say Hi to my parents, especially my mother and
my father.”

I “Nema budale dok ne doktorira.”
(You don’t recognize the fool before he gets the PhD.)
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Outline

Strongly regular bicirculants and primitive groups of degree 2p

Hamilton cycles in Cayley graphs

Semiregular automorphisms in vertex-transitive graphs



Outcome

Open problem 1: Classify strongly regular bicirculants and
consequently obtain a CFSG-free proof of nonexistence of simply
primitive groups of degree 2p.

Open problem 2: Hamilton cycles in Cayley graphs of groups with
a (2, s, t)-presentation (interim report).

Open problem 3: Existence of semiregular automorphisms in
vertex-transitive graphs admitting a transitive solvable group.



Strongly regular bicirculants
and primitive groups of degree 2p



VTG of order p, where p is a prime

Then the graph is a p-circulant, that is, a Cayley graph of a cyclic
group of order p.



VTG of order 2p, where p is a prime

Then the graph is a p-bicirculant, that is, a graph with a
(2, p)-semiregular automorphism.

An element of a permutation group is semiregular, more precisely

(m, n)-semiregular, if it has m orbits of size n and no other orbit.



VTG of order 2p, where p is a prime

Let ρ be a (2, n)-semiregular automorphism of an n-bicirculant X ,
let U and W be the two orbits of ρ, and let u ∈ U and w ∈W .

Let S = {s ∈ Zn \ {0} | u ∼ ρs(u)} be the symbol of the
n-circulant induced on U and, let R be the symbol of the
n-circulant induced on W (relative to ρ). Moreover, let
T = {t ∈ Zn | u ∼ ρt(w)}. The ordered triple [S ,R,T ] is the
symbol of X relative to (ρ, u,w). Note that S = −S and R = −R
are symmetric, that is, inverse-closed subsets of Zn \ {0} and are
independent of the choice of vertices u and w .



VTG of order 2p, where p is a prime

In VT n-bicirculant either

I ∃ a swap, an automorphism interchanging the two orbits;

I ∃ a mixer, an automorphism mixing the two orbits;

I ∃ a swap and a mixer.



VTG of order 2p, where p is a prime

X VTG of order 2p, G ≤ AutX transitive

I G -imprimitive blocks of size p;

I G -imprimitive blocks of size 2,

I G is primitive.



G -imprimitive blocks of size p

iff ∃ S = −S ⊆ Z∗p, T ⊆ Zp and a ∈ Z∗p such that [S , aS ,T ] with
a2S = S and aT = T is a symbol of X .

The Petersen graph
S = {±1}, T = {0} and a = 2.



G -imprimitive blocks of size 2

Theorem (DM, ’81)

There exists a transitive subgroup H ≤ G with blocks of size p.

Consequently the same type of algebraic description for X with
symbol [S , aS ,T ] exists for appropriate S , T , a.



G is primitive

Wielandt’s theorem, ’56
Let G ≤ Sym(V ) be a primitive group of degree 2p . Then:

I The stabilizer Gv of v ∈ V has at most three orbits.

I If the number of orbits is exactly three, then
2p = (2s + 1)2 + 1 for some natural number s. The lengths of
the orbits of Gv are 1, s(2s + 1), (s + 1)(2s + 1).

Example:
p = 5, A5, S5 acting on pairs from {1, 2, 3, 4, 5}.
Associated graphs: the Petersen graph and its complement.



G is primitive

By the classification of finite simple groups (CFSG) any primitive
group of degree 2p, p > 5, is 2-transitive.

How about a CFSG-free proof of this fact?



Generalization of Wielandt’s theorem

Kovács, DM, Muzychuk, to appear in Transactions AMS
Let G ≤ Sym(V ) be a primitive group of degree 2pe . Then:

I The stabilizer Gv of v ∈ V has at most three orbits.

I If the number of orbits is exactly three, then
2pe = (2s + 1)2 + 1 for some natural number s. The lengths
of the orbits of Gv are 1, s(2s + 1), (s + 1)(2s + 1).

In fact, above is a corollary of a more general result for association
schemes.



Since every rank 3 group gives rise to a strongly regular graph,
such graphs are a natural framework for the study of primitive
bicirculants.



Strongly regular graphs

A regular graph X with v vertices and of valency k is (v , k, λ, µ)-
strongly regular if each pair of adjacent vertices has λ common neighbors
and each pair of nonadjacent vertices has µ common neighbors.

A strongly regular graph X is trivial if either X or its complement X c is
disconnected.

X is disconnected if and only if µ = 0, in which case X is a disjoint union

of isomorphic copies of complete graphs.



Strongly regular p-bicirculants

Necessary arithmetic conditions for the existence of
(2p, k, λ, µ)-strongly regular p-bicirculants with symbol [S ,R,T ]
(DM, ’88):

I p = 2s2 + 2s + 1 for some positive integer s;

I k = s(2s + 1) or k = (s + 1)(2s + 1);

I |S | = |R| = (p − 1)/2 = s(s + 1);

I |T | = µ = λ+ 1 equals s2 or (s + 1)2;

I S and R are complements of each other relative to Z∗p.



Strongly regular p-bicirculants

This result was extended to strongly regular n-bicirculants for n
odd (de Resmini, Jungnickel, ’92) and for n even (Leung, Ma, ’93)



Existence of strongly regular p-bicirculants

n S T Is VT Is ET
5 {±1} {0} Yes Yes
8 {±1} (R = {±3}) {0,±1, 4} Yes Yes/No∗

13 {±1,±3,±4} {0, 1, 3, 9} No No
25 {±1,±2,±4,±6,±9,±10} {0,±1,±2,±7,±11} Yes No
41 {±1,±4,±6,±10,±14, {0,±1,±4,±10, 11, 12, No No

±15,±16,±17,±18,±19} ±16,±18, 28, 34, 38}
41 {±1,±6,±8,±9,±10, {±1,±3,±4,±5, Yes No

±12,±13,±15,±16,±20} ±9,±12,±14,±15, }
61 {±1,±2,±4,±6,±7, {0,±1,±2,±4,±10,±11, Yes No

±8,±10,±13,±18,±19, ±12± 15,±17,±18,
±20,±23,±25,±28,±29} ±19,±22,±26}

∗The graph with smaller valency is edge-transitive, but its complement is not.



Strongly regular p-bicirculants

Further study of strongly regular bicirculants in order to

I understand their structure, so as to

I obtain a CFSG-free proof of non-existence of simply primitive
groups of degree 2p.



Hamilton cycles in Cayley graphs



Tying together two seemingly unrelated concepts:
traversability and symmetry

Lovász question, ’69

Does every connected vertex-transitive graph have a Hamilton
path?

Lovász problem is, somewhat misleadingly, usually referred to as
the Lovász conjecture, presumably in view of the fact that, after all
these years, a connected vertex-transitive graph without a
Hamilton path is yet to be produced.



VT graphs without Hamilton cycle

Only four connected VTG (having at least three vertices) not
having a Hamilton cycle are known to exist:

I the Petersen graph,

I the Coxeter graph,

I and the two graphs obtained from them by truncation.

All of these are cubic graphs, suggesting that no attempt to resolve
the problem can bypass a thorough analysis of cubic VTG.

None of these four graphs is a Cayley graph, leading to the
conjecture that every connected Cayley graph has a Hamilton cycle.



The truncation of the Petersen graph



Conjectures/counterconjectures

Babai, ’79
There exist infinitely many connected vertex-transitive graphs
without a Hamilton cycle.

Thomassen, ’91
There exist only finitely many such graphs.



Current situation

Hamilton cycles (paths) are known to exist for various families of
Cayley graphs.

But not known whether they exist, e.g., for Cayley graphs of
dihedral groups of order 2 (mod 4).



Cubic Cayley graphs

Hamilton cycles are known to exist for

I cubic CG of dihedral groups (Alspach, Zhang,’89)

I cubic CG Cay(G , S), where S = {a, b, c} and
a2 = b2 = c2 = 1 and ab = ba (Cherkassoff, Sjerve).

I cubic CG Cay(G ,S) of order 2 (mod 4), where S = {a, x}
and x s = 1, a2 = 1 and (ax)3 = 1 (Glover, DM, ’07).

I and for some other cases.



Hamilton cycles in Cay(G , {a, b, c}), where
G = 〈a, b, c | a2 = b2 = c2 = (ac)s = (bc)t = 1, ab = ba〉



Hamilton cycles in (2,s,3)-Cayley graphs

Glover, DM, ’07
Let s ≥ 3 and G = 〈a, x |a2 = 1, x s = 1, (ax)3 = 1, . . .〉 a group
with a (2, s, 3)-presentation. Then Cay(G , {a, x , x−1}) has

I a Hamilton cycle when |G | is congruent to 2 modulo 4, and

I a cycle of length |G | − 2, and also a Hamilton path, when |G |
is congruent to 0 modulo 4.



Proof strategy

Based on an embedding of X = Cay(G , {a, x , x−1}), onto a
corresponding orientable surface with s-gonal and hexagonal faces,
in which one then looks for a long tree of faces – a tree of faces
whose boundary is either a Hamilton cycle in X or a cycle missing
two adjacent vertices.



Example: |G | ≡ 2(mod 4)

G = S3 × Z3 with a (2, 6, 3)-presentation
〈a, x | a2 = x6 = (ax)3 = 1, . . .〉,
where a = ((12), 0) and x = ((13), 1).



Example: |G | ≡ 0(mod 4)

G = S4 with a (2, 4, 3)-presentation 〈a, x | a2 = x4 = (ax)3 = 1〉,
where a = (12) and x = (1234).



Payan, Sakarovitch

Payan, Sakarovitch, ’75
Let X be a cyclically 4-edge-connected cubic graph of order n, and let S be a
maximum cyclically stable subset of V (X ). Then |S| = b(3n − 2)/2c and more
precisely, the following hold.

I If n ≡ 2 (mod 4) then |S| = (3n − 2)/4, and X [S] is a tree and V (X ) \ S is an
independent set of vertices;

I If n ≡ 0 (mod 4) then |S| = (3n − 4)/4, and either X [S] is a tree and V (X ) \ S
induces a graph with a single edge, or X [S] has two components and V (X ) \ S
is an independent set of vertices.



Cyclically stable subsets



(2, s, 3)-Cayley graphs of order 0 (mod 4)

To go from a Hamilton path to a Hamilton cycle in a
(2, s, 3)-Cayley graph of order 0 (mod 4) three cases can occur:

I s ≡ 0 (mod 4).

I s ≡ 2 (mod 4).

I s odd.



Hamiltonicity of (2, s, 3)-Cayley graphs, s ≡ 0 (mod 4)

Glover, Kutnar, DM, J. Alg. Combin., in press

Let s ≡ 0 (mod 4) ≥ 4 be an integer. Then a (2, s, 3)-Cayley
graph has a Hamilton cycle.

Essential ingredients in the proof

I Method used in the proof of the first result.

I Classification of cubic ATG of girth 6.

I Results on cubic ATG admitting a 1-regular subgroup.



Example: |G | ≡ 0(mod 4)

G = S4 with a (2, 4, 3)-presentation 〈a, x | a2 = x4 = (ax)3 = 1〉,
where a = (12) and x = (1234).



Hamiltonicity of (2, s, 3)-Cayley graphs, s odd

Glover, Kutnar, DM
Let s be an odd integer. Then a (2, s, 3)-Cayley graph has a
Hamilton cycle.

Essential ingredients in the proof

I 〈x〉 is corefree in G = 〈a, x | a2 = x s = (ax)3 = 1, . . .〉:
A method similar to the method used in s ≡ 0 (mod 4) case
gives us a Hamilton cycle as a boundary of a Hamilton tree of
faces consisting of hexagons and two s-gons.

I 〈x〉 is not corefree in G = 〈a, x | a2 = x s = (ax)3 = 1, . . .〉:
Results about lifts of Hamilton cycles in covers of graphs are
needed.



Hamiltonicity of (2, s, 3)-Cayley graphs, s odd



Hamiltonicity of (2, s, 3)-Cayley graphs, s ≡ 2 (mod 4)

s ≡ 2 (mod 4) requires a different approach, work in progress.

Three diffrent cases need to be consider

I 〈x〉 is not corefree, normal part of 〈x〉 of even order DONE

I 〈x〉 is not corefree, normal part of 〈x〉 of odd order

I 〈x〉 is corefree.



Hamiltonicity of (2, s, t)-Cayley graphs, t ≥ 4

With similar methods one can obtain existence of large cycles in
(2, s, 4)-Cayley graphs (not necessarily Hamilton cycles).



Semiregular automorphisms in vertex-transitive graphs



Semiregular automorphisms in VTG

Does every vertex-transitive graph have a semiregular
automorphism (DM, 1981; for transitive 2-closed groups, Klin,
1996)?

An element of a permutation group is semiregular, more precisely
(m, n)-semiregular, if it has m orbits of size n and no other orbit.



Examples



Semiregular elements

I (A) Automorphism groups of vertex-transitive (di)graphs;

I (B) 2-closed transitive permutation groups;

I (C) Transitive permutation groups.



Semiregular elements

(B) but not (A):

Regular action of H = (Z2)2 = {id , (12)(34), (13)(24), (14)(23)}
on V = {1, 2, 3, 4}. Each of the orbital graphs has a dihedral
automorphism group intersecting in H; so H is 2-closed but not
the automorphism group of a (di)graph.



Semiregular elements

(C) but not (B):

AGL(1, p2), for p = 2k − 1 a Mersenne prime, acting on the set of
p(p + 1) lines of the affine plane AG (2, p).



Results

I All transitive permutation groups of degree pk or mp, for some
prime p and m < p, have SE of order p (DM, ’81).

I All cubic VTG have SA (DM, Scapellato, ’93).

I All VTD of order 2p2 have SA of order p (DM, Scapellato, ’93).

I All vertex-primitive graphs have SA (Giudici, ’03).

I All vertex-quasiprimitive graphs have SA (Giudici, ’03).

I All vertex-transitive bipartite graphs where only system of
imprimitivity is the bipartition, have SA (Giudici, Xu, ’07).

I Every 2-arc-transitive graph has SA (Xu, ’07).

I Every ATG of prime valency has SA (Xu, ’07).

I All quartic VTG have SA (Dobson, Malnič, DM, Nowitz, ’07).



I All VTG of valency p + 1 admitting a transitive {2, p}-group for p
odd have SA (Dobson, Malnič, DM, Nowitz, ’07).

I There are no elusive 2-closed groups of square-free degree (Dobson,
Malnič, DM, Nowitz, ’07).

I All ATG with valency pq, p, q primes, such that Aut(X) has a
nonabelian minimal normal subgroup N with at least 3 vertex orbits,
have SA (Xu, ’08).

I Every VT, edge-primitive graph has SA (Giudici, Li, ’09).

I All distance-transitive graphs have SA (Kutnar, Šparl, ’09).



Semiregular automorphisms

The main steps towards a possible complete solution of the
problem would have to consist of a proof of the existence of
semiregular automorphisms in vertex-transitive graphs admitting a
transitive solvable group.

Even for small valency graphs this is not easy. For example,
valency 5 is still open.



TO THE COMMON BORDER BETWEEN SLOVAKIA AND SLOVENIA!

NA SPOLOČNÚ HRANICU MEDZI SLOVENSKOM A SLOVINSKOM!

NA SKUPNO MEJO MED SLOVAŠKO IN SLOVENIJO!
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