Regular covers of the uniform tessellations of the plane

Daniel Pellicer

Gordon Williams

2-cell embedding of a (possibly infinite) connected graph on a surface

2-cell embedding of a (possibly infinite) connected graph on a surface

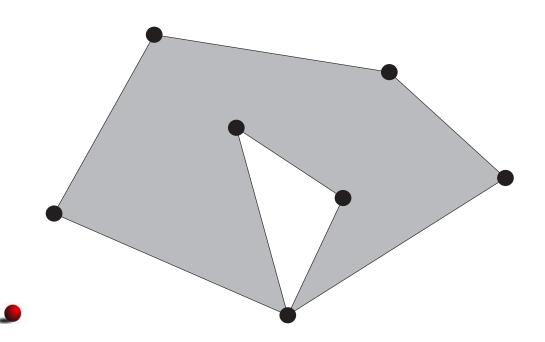
2-cell embedding of a (possibly infinite) connected graph on a surface

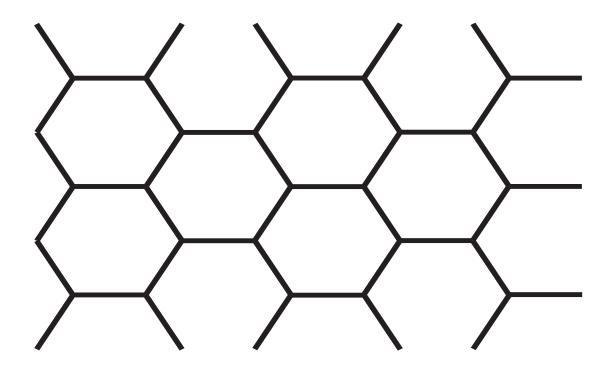
2-cell embedding of a (possibly infinite) connected graph on a surface

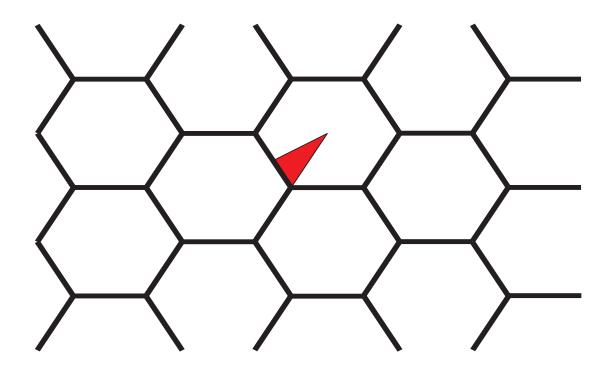
- loops
- bridges

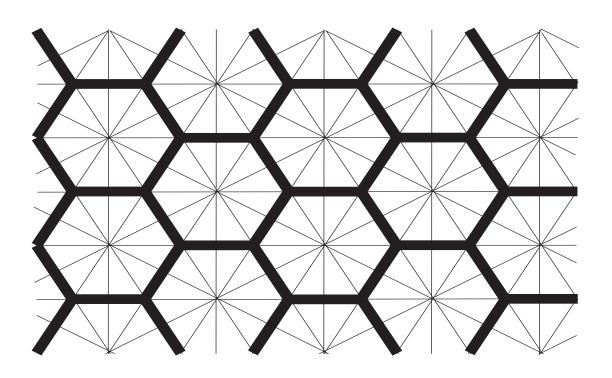
2-cell embedding of a (possibly infinite) connected graph on a surface

- loops
- bridges



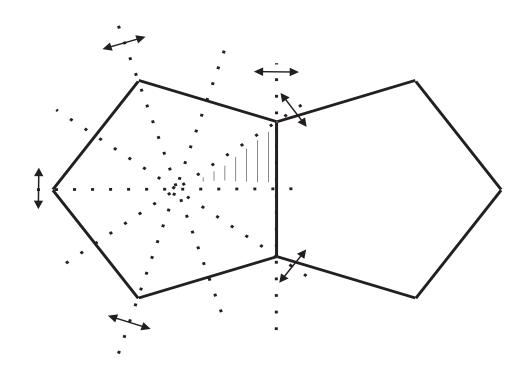




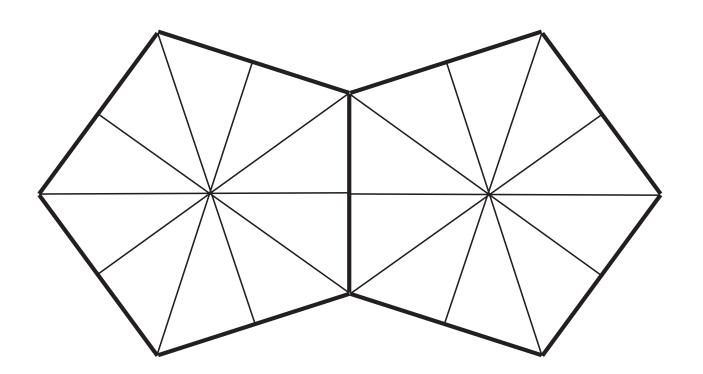


Regular — automorphism group transitive on flags

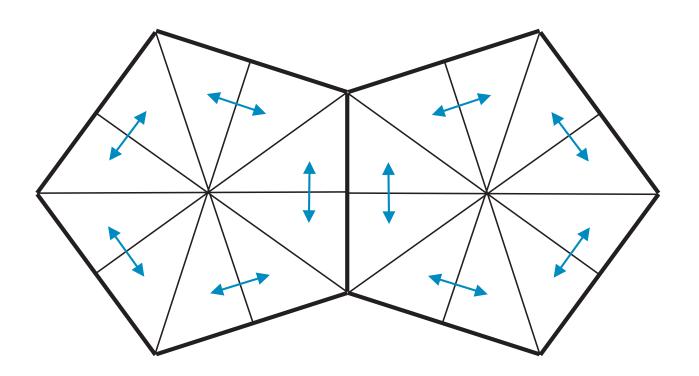
Regular — automorphism group transitive on flags



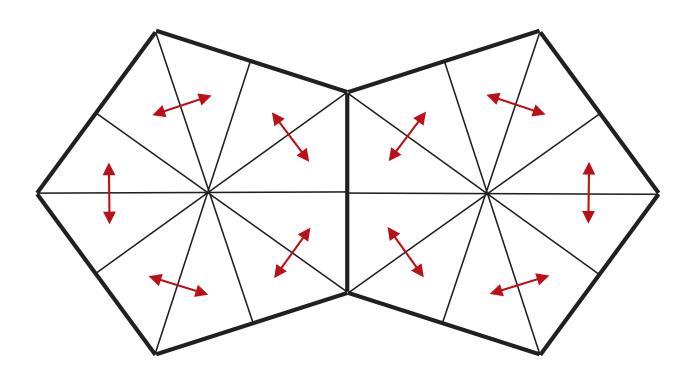
Permutations of flags



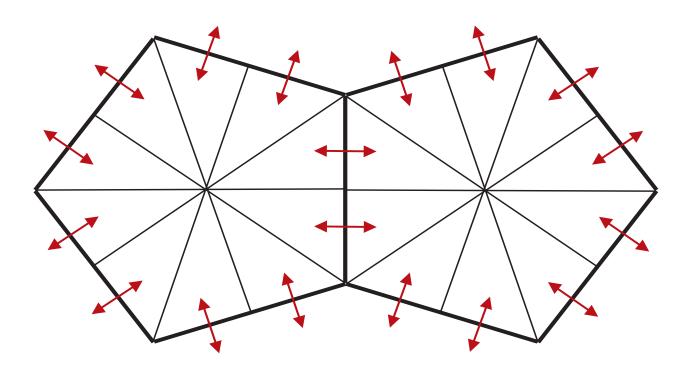
 r_0



 r_1



 r_2



ullet $Mon := \langle r_0, r_1, r_2 \rangle$

$$ullet$$
 $Mon := \langle r_0, r_1, r_2 \rangle$

• \mathcal{P} regular then $\Gamma(\mathcal{P})\cong Mon(\mathcal{P})$

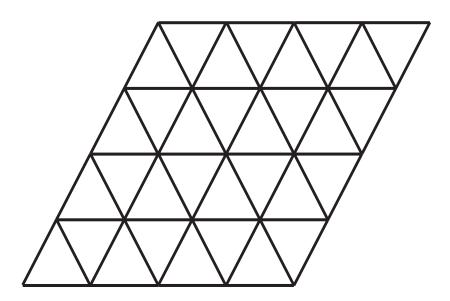
•
$$Mon := \langle r_0, r_1, r_2 \rangle$$

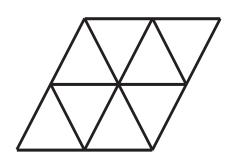
• \mathcal{P} regular then $\Gamma(\mathcal{P}) \cong Mon(\mathcal{P})$

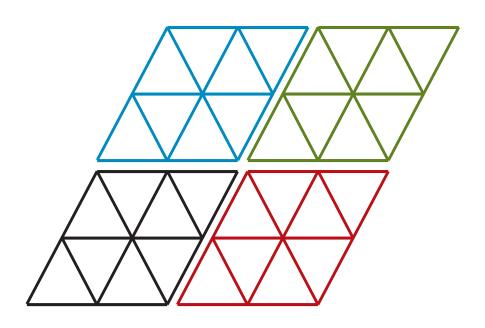
Regular \mathcal{P} covers \mathcal{Q} if there is an epimorphism

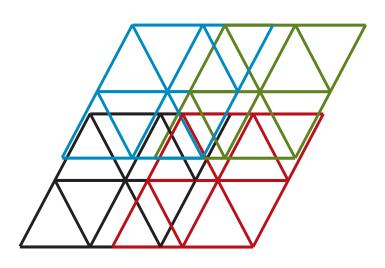
$$\Gamma(\mathcal{P}) \longrightarrow Mon(\mathcal{Q})$$

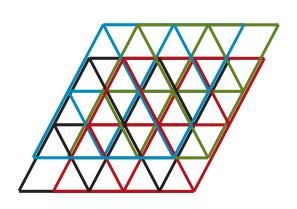
$$\rho_i \longmapsto r_i$$

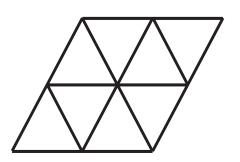










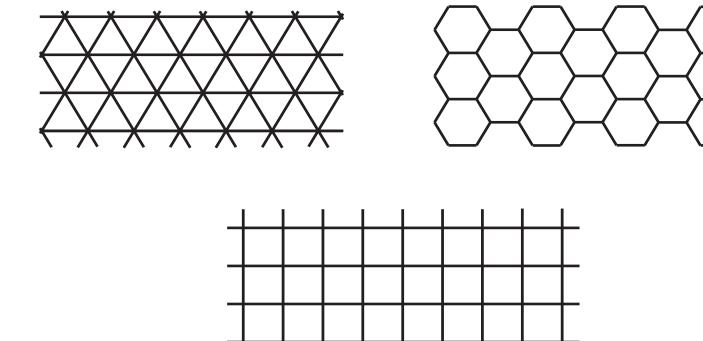


Every polyhedron has a (minimal) regular cover

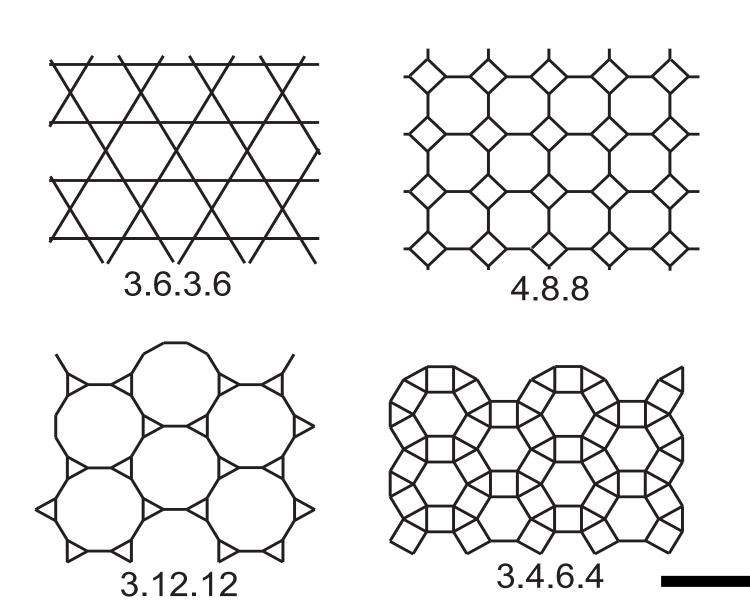
Every polyhedron has a (minimal) regular cover

M. Hartley, G. Williams worked on the regular covers of the Archimedean solids

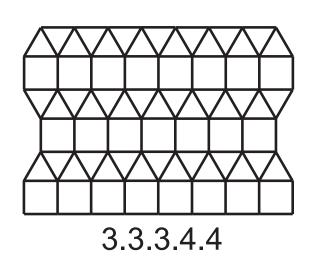
Regular tessellations

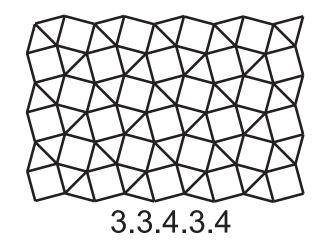


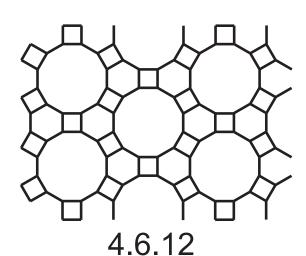
Uniform tessellations

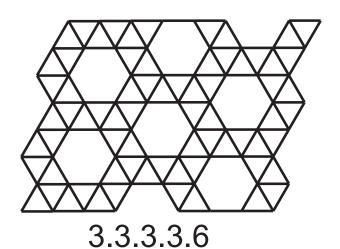


Uniform tessellations

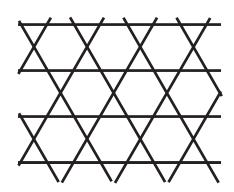




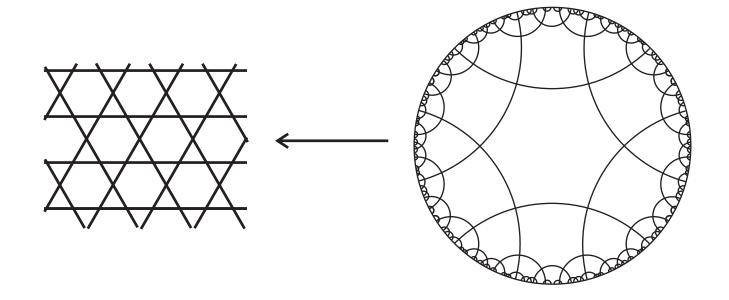


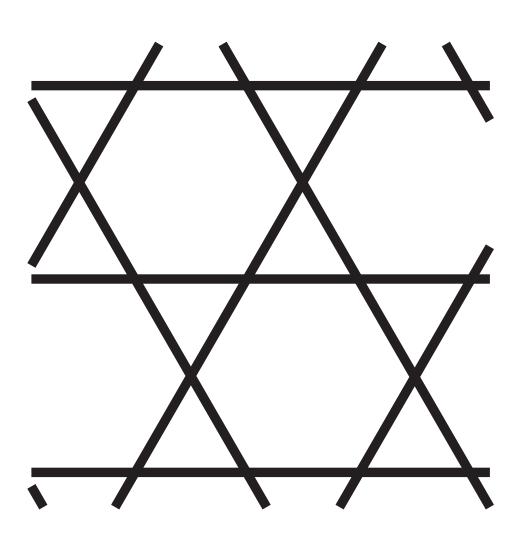


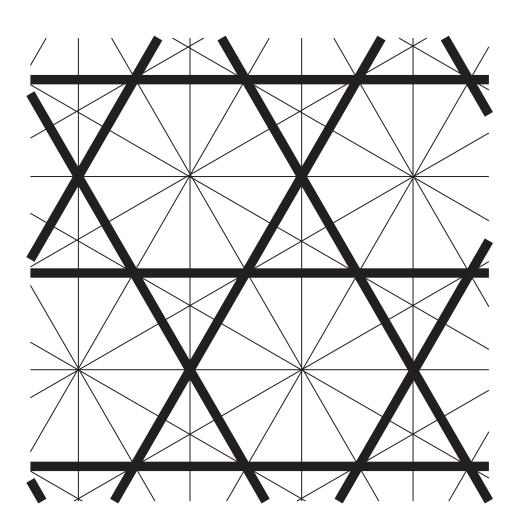
Universal cover

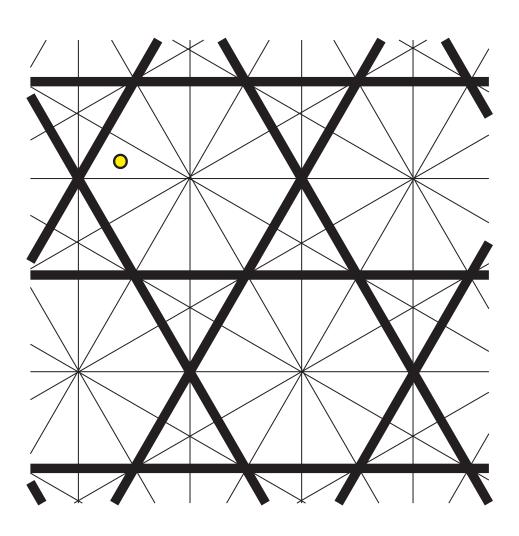


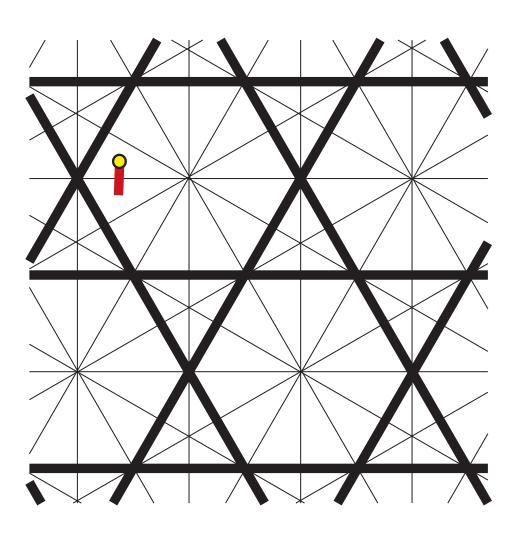
Universal cover

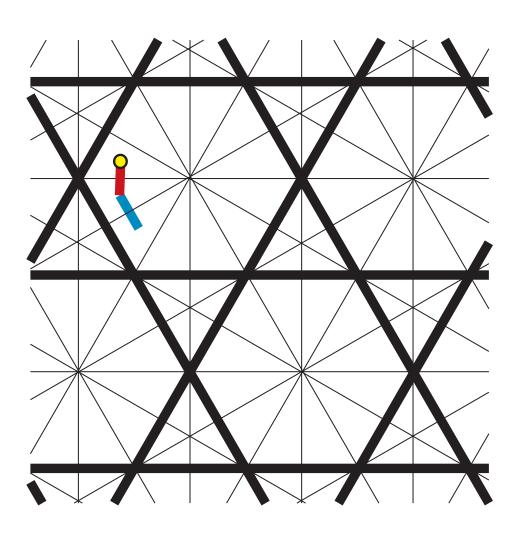


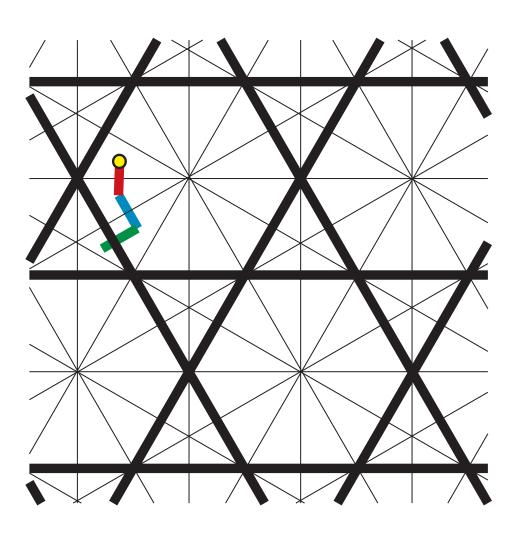


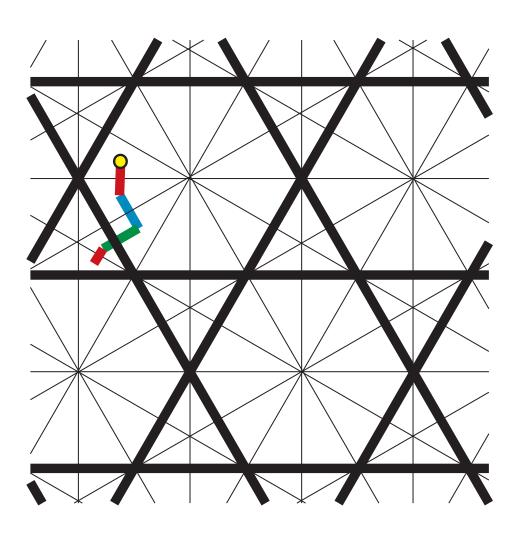


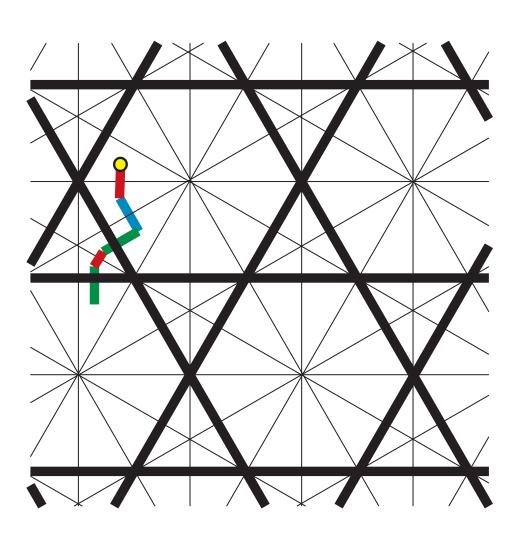


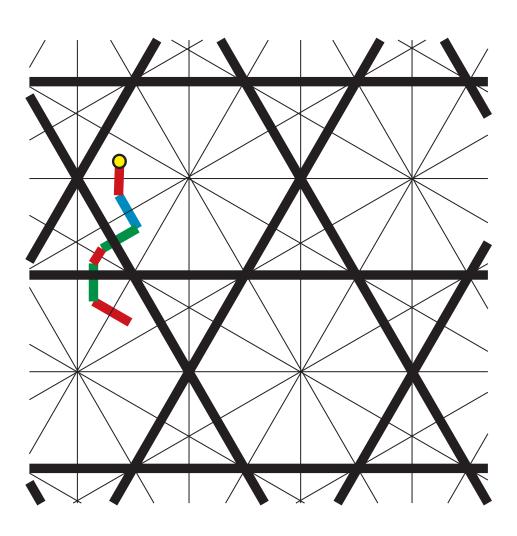


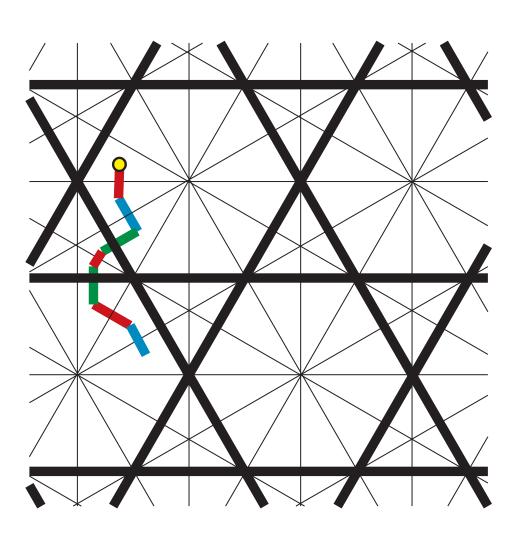


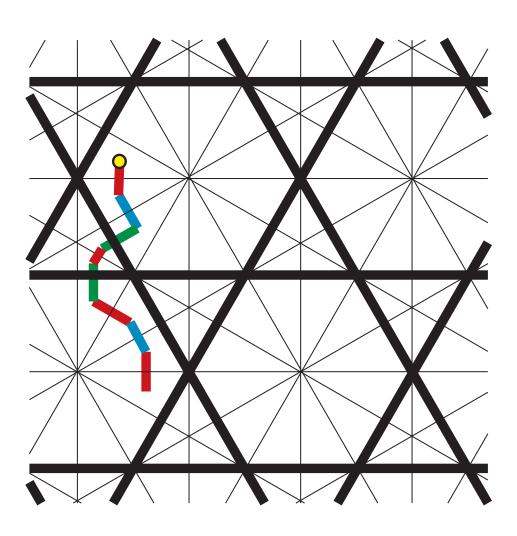


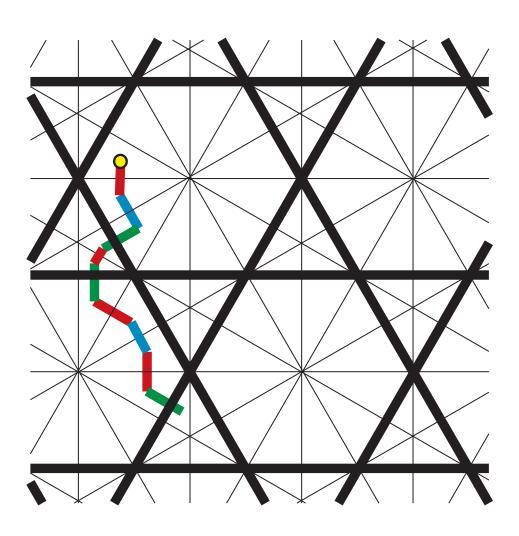


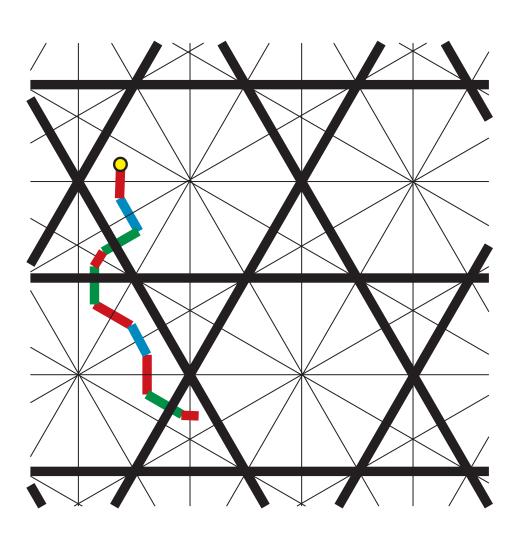


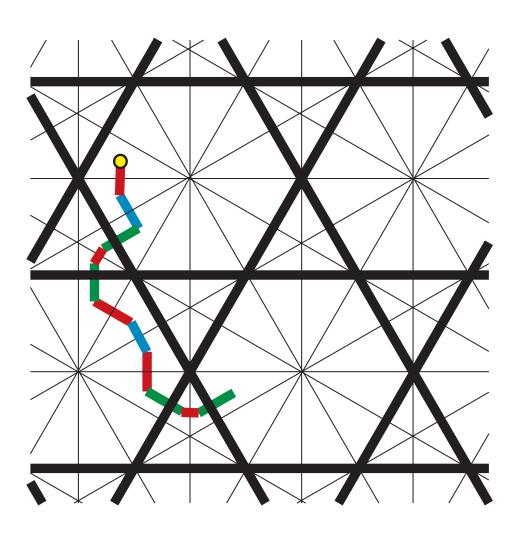


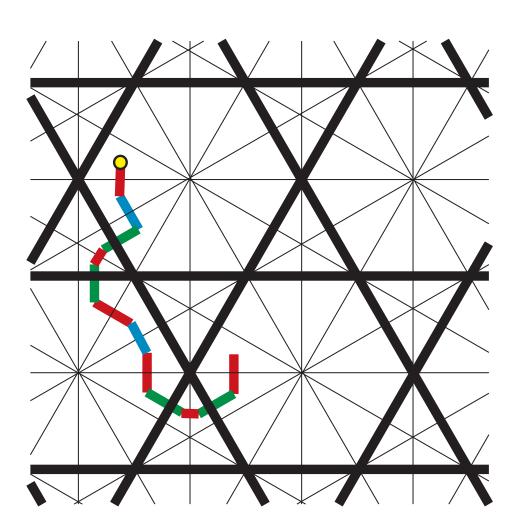


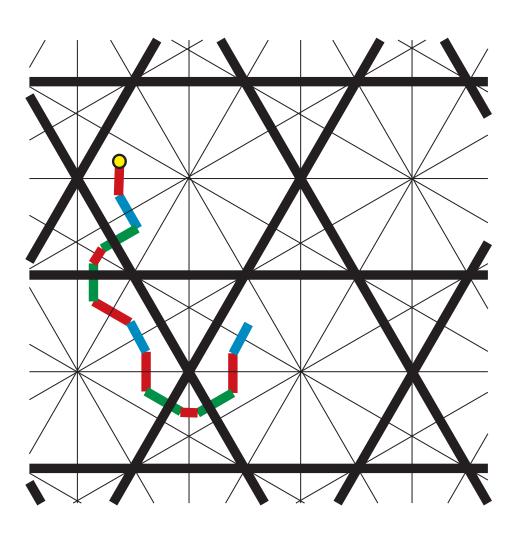


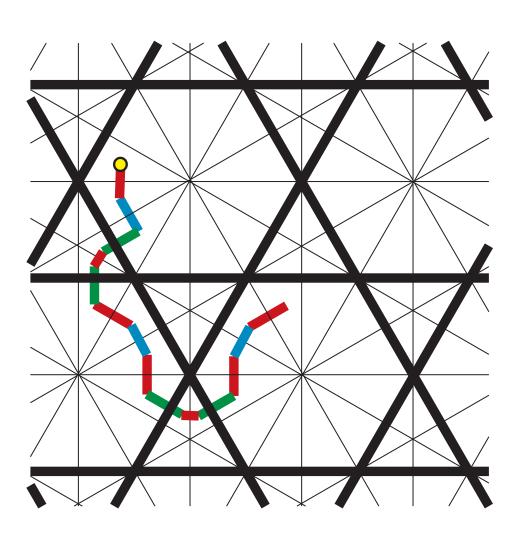


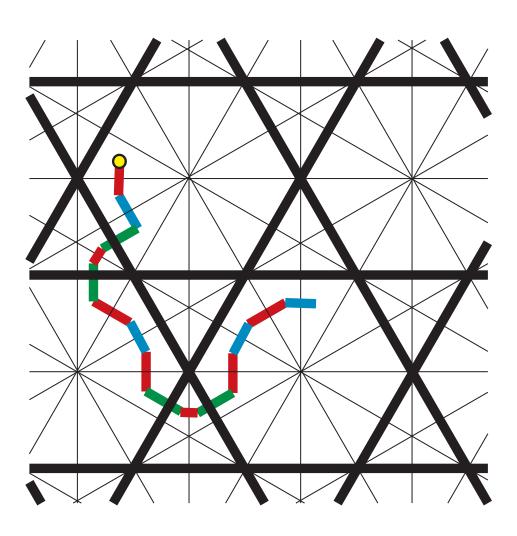


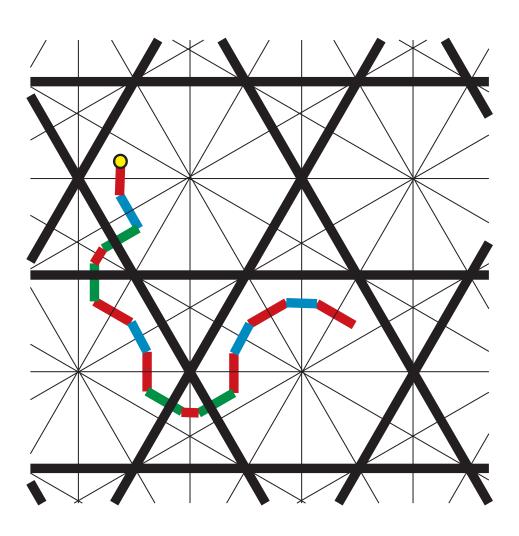


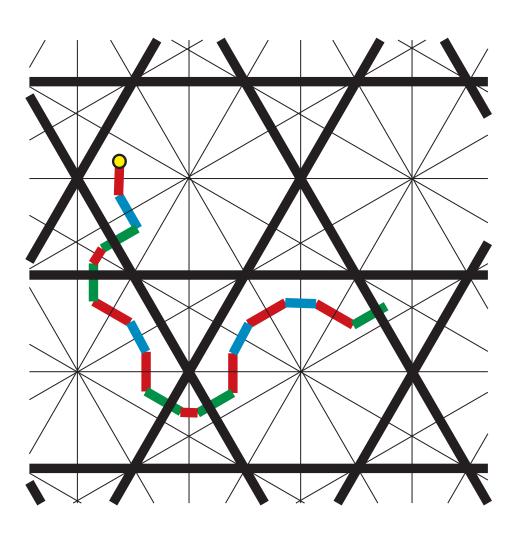


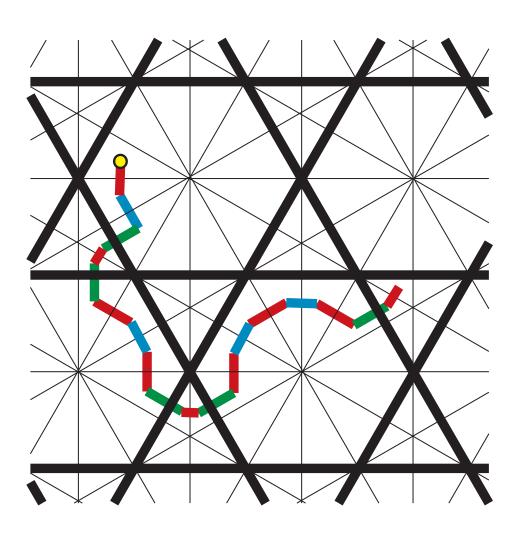


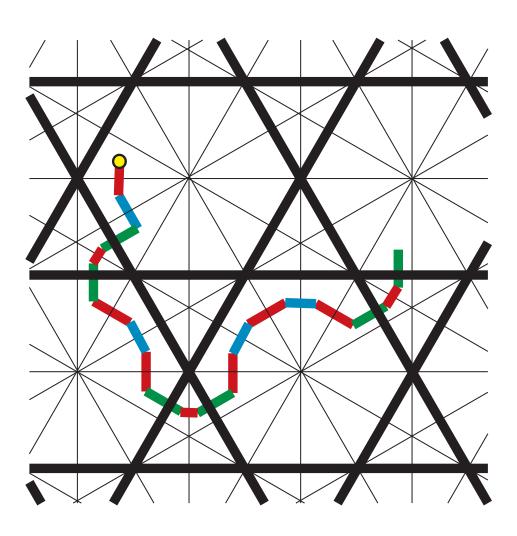


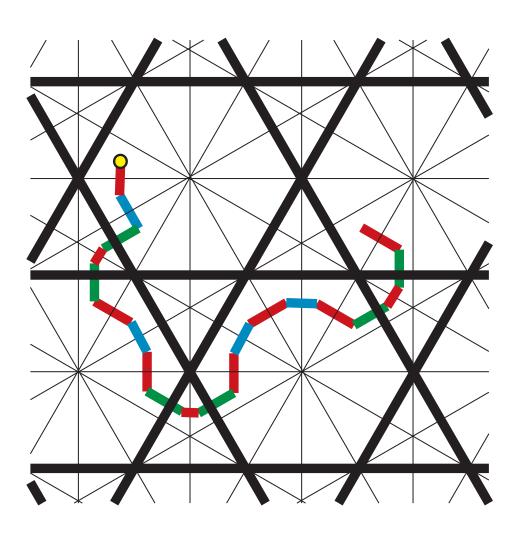


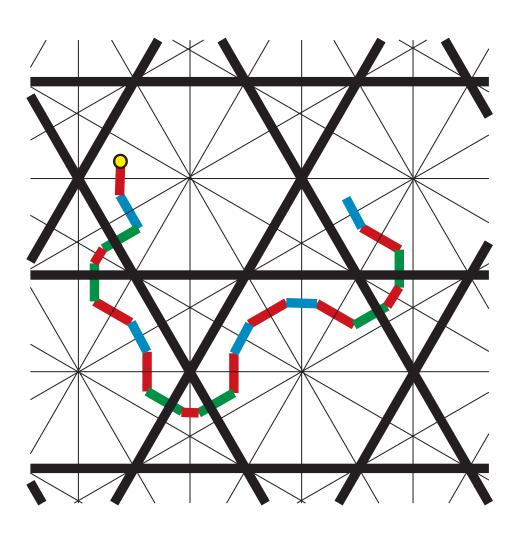


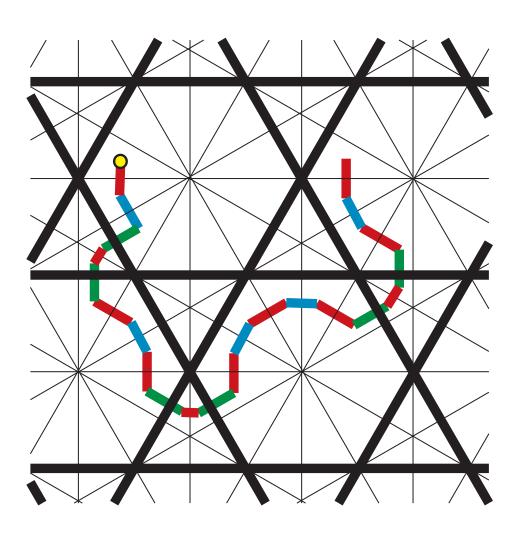


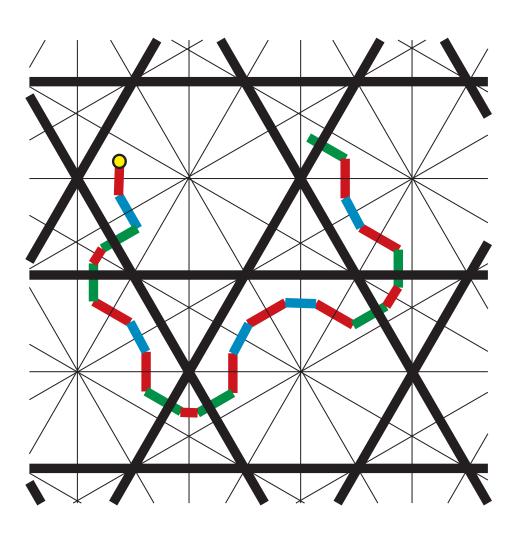


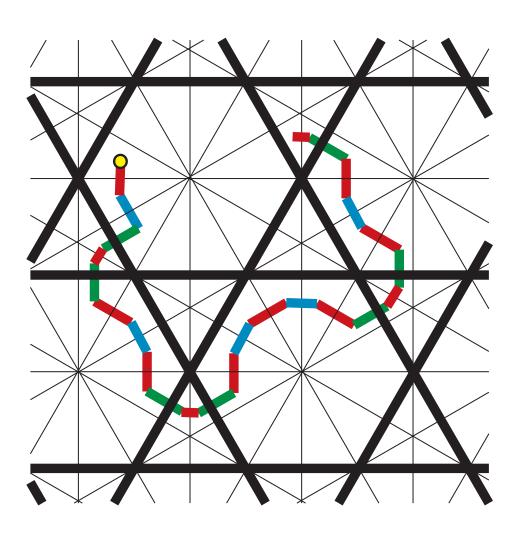


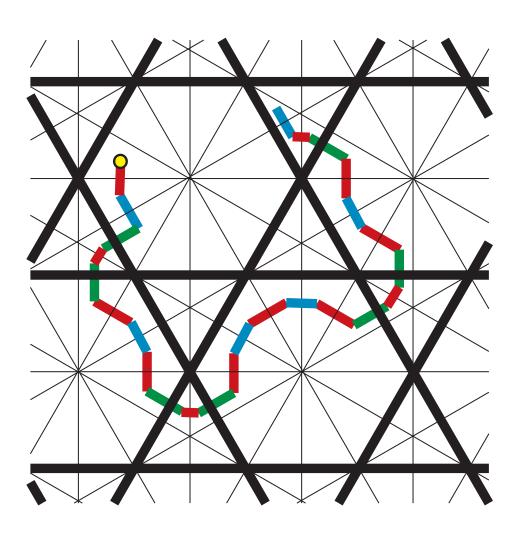


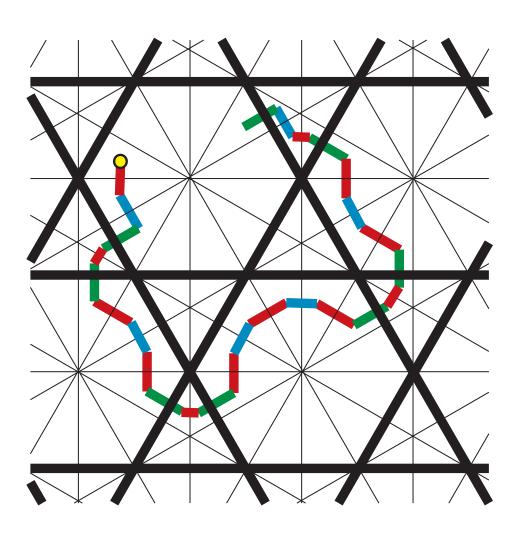


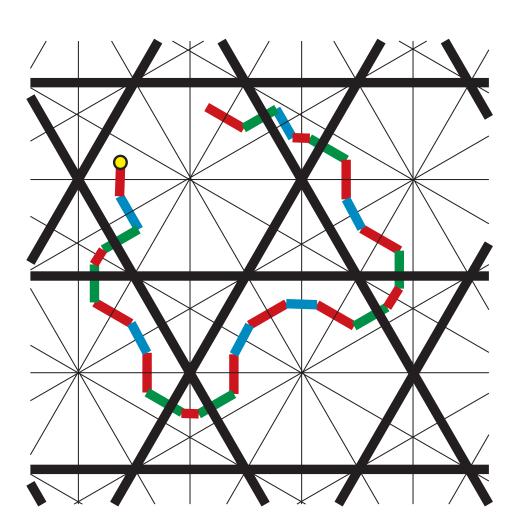


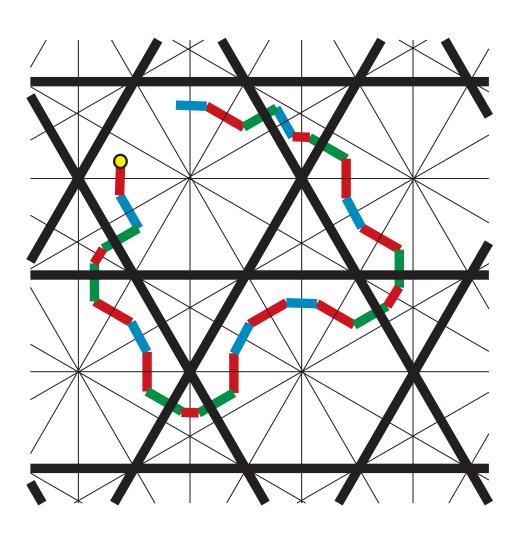


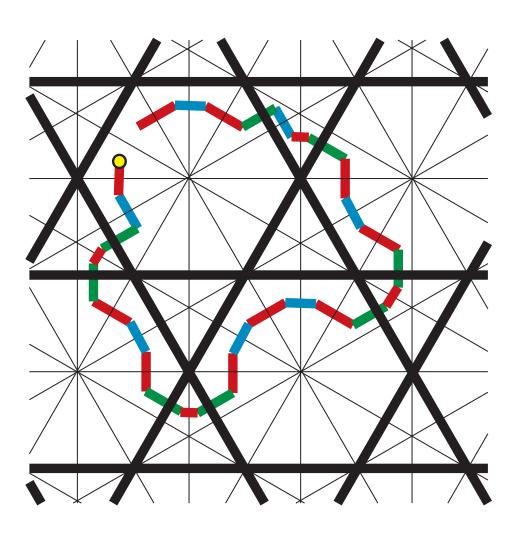


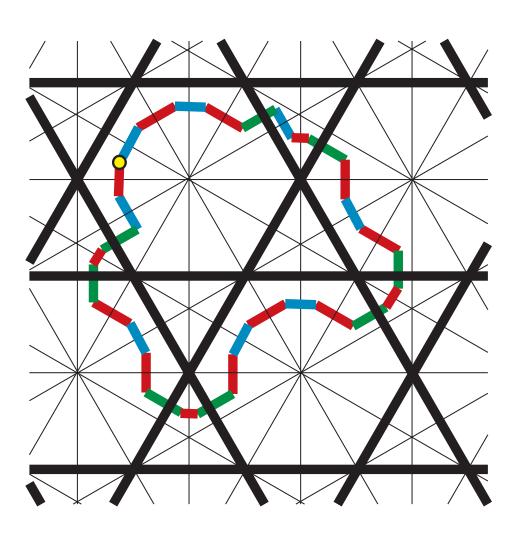


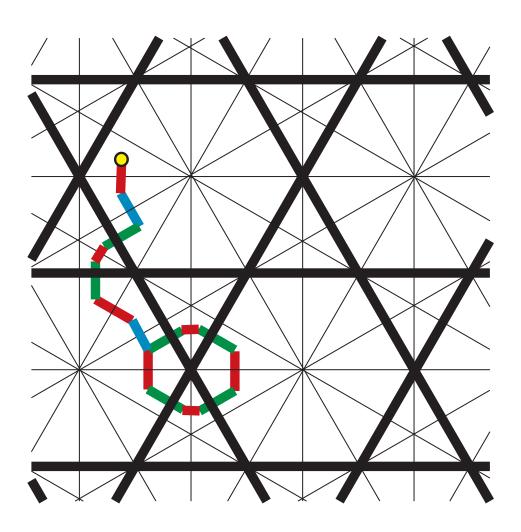


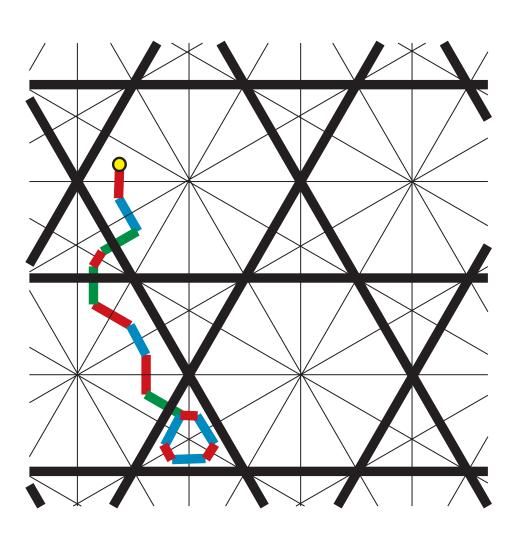












Properties of covers of uniform tilin

Stabilizers — not finitely generated

Properties of covers of uniform tilin

- Stabilizers not finitely generated
- The minimal coverings are not the hyperbolic tessellations

Properties of covers of uniform tilin

- Stabilizers not finitely generated
- The minimal coverings are not the hyperbolic tessellations
- The index of all regular covers is infinite

MINIMAL REGULAR COVER

MINIMAL REGULAR COVER

The hyperbolic tessellation $\{6,4\}$ subject to the relations

MINIMAL REGULAR COVER

The hyperbolic tessellation $\{6,4\}$ subject to the relations

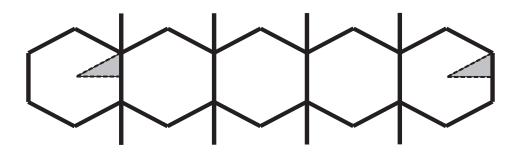
$$[(\rho_1\rho_0)^2\rho_1\rho_2]^4$$

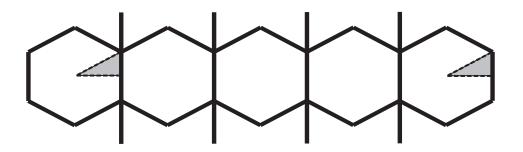
MINIMAL REGULAR COVER

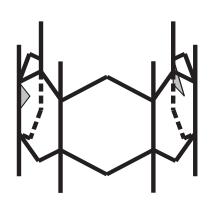
The hyperbolic tessellation $\{6,4\}$ subject to the relations

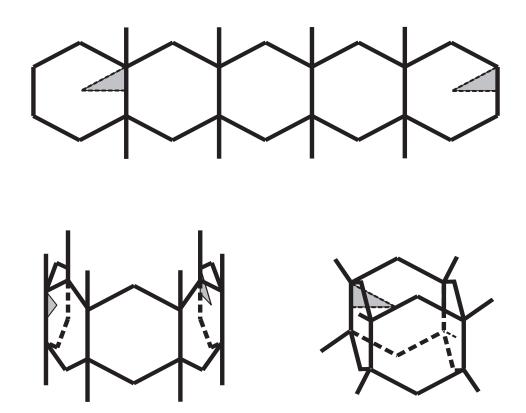
$$[(\rho_1\rho_0)^2\rho_1\rho_2]^4$$

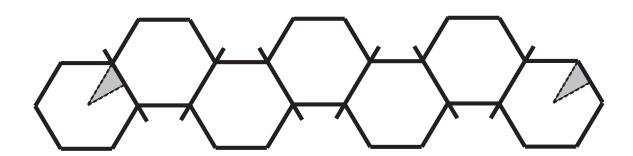
$$[(\rho_1\rho_0)^2\rho_2]^6$$

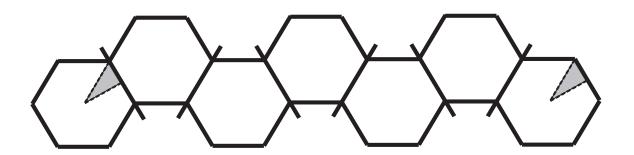


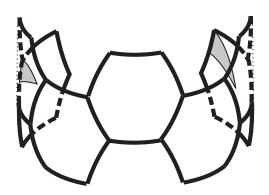


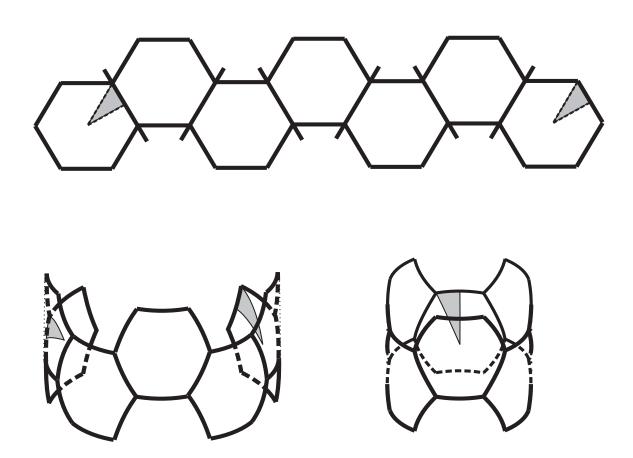












E N D