

Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$
Rigid Line Structures

Page 1 of 29

Go Back

Full Screen

Close

Quit

Polarity and Rigidity

Brigitte and Herman Servatius

Worcester Polytechnic Institute

Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$
Rigid Line Structures

Title Page

1. Edmond's Theorem

Given a hypergraph H = (V, E). $|E| \times |V|$ Matrix: T(H, X)

$$t_{ij} = \begin{cases} x_{ij} & v_j \in e_i \\ 0 & \text{otherwise} \end{cases}$$

Theorem

 Image: Page 2 of 29

Go Back

Full Screen

Close

Quit

The rows of T(H, X) are independent if and only if $|E| \leq |V|$ and for each subset $E' \subseteq E$, $|E'| \leq |V'|$ where V' is the set of vertices supporting E'.

Theorem

The kernel of T(H, X) is of dimension k if and only if $|E| \leq |V| - k$ and for each subset $E' \subseteq E$, $|E'| \leq |V'| - k$ where V' is the set of vertices supporting E'.

Example: The Fano Plane

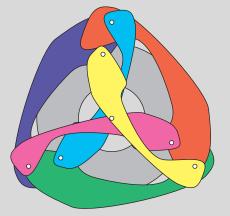
Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$
Rigid Line Structures

Page <mark>3</mark> of <mark>29</mark>

Go Back

Full Screen

Close



0	x_{12}	x_{13}	0	0	x_{16}	0 -
x_{21}	0	x_{23}	0	x_{25}	0	0
x_{31}	x_{32}	0	x_{34}	0	0	0
0	0	x_{43}	x_{44}	0	0	x_{47}
0	x_{52}	0	0	x_{55}	0	x_{57}
x_{61}	0	0	0	0	x_{66}	x_{67}
0	0	0	x_{74}	x_{75}	x_{76}	0

Edmond's TheoremThe k-planeWhiteley's TheoremJackson Jordán $\mathfrak{M}_2(K_{n,m})$ Rigid Line Structures

Home Page

Title Page

Page 4 of 29

Go Back

Full Screen

Close

44

••

Whiteley's Idea

Start with the matrix of a regular hypergraph.

0	x_{12}	x_{13}	0	0	x_{16}	0
x_{21}	0	x_{23}	0	x_{25}	0	0
x_{31}	x_{32}	0	x_{34}	0	0	0
0	0	x_{43}		0	0	x_{47}
0	x_{52}	0	0	x_{55}	0	x_{57}
x_{61}	0	0	0	0	x_{66}	x_{67}
0	0	0	x_{74}	x_{75}	x_{76}	0

Quit

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$
Rigid Line Structures

Full Screen

Close

Whiteley's Idea

Start with the matrix of a regular hypergraph where

 $|E| \le |V| - 2.$

The matrix with generic entries has a two dimensional kernel.

x_1	x_2	x_3	x_4	x_5	x_6	$\begin{bmatrix} x_7\\y_7\end{bmatrix}$
y_1	y_2	y_3	y_4	y_5	y_6	y_7

0	x_{12}	x_{13}	0	0	x_{16}	0
x_{21}	0	x_{23}	0	x_{25}	0	0
x_{31}	x_{32}	0	x_{34}	0	0	0
0	0	x_{43}	x_{44}	0	0	x_{47}
0			0			

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qui

Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$
Rigid Line Structures

Full Screen

Close

Whiteley's Idea

Start with the matrix of a regular hypergraph where

 $|E| \le |V| - 2.$

The matrix with generic entries has a two dimensional kernel.

Scale the columns so there is a row of 1's (alters the matrix, but not its rank properties)

0	x_{12}	x_{13}	0	0	x_{16}	0 7	
x_{21}	0	x_{23}	0	x_{25}	0	0	
x_{31}	x_{32}	0	x_{34}	0	0	0	
0	0	x_{43}	x_{44}	0	0	x_{47}	
0	x_{52}	0	0	x_{55}	0	x_{57}	

Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$
Rigid Line Structures

Close

Quit

Whiteley's Idea

Start with the matrix of a regular hypergraph where

 $|E| \le |V| - 2.$

The matrix with generic entries has a three dimensional kernel.

Scale the columns so there is a row of 1's (alters the matrix, but not its rank properties)

Since each row is supported by 3 columns, the original (generic) entries can be expressed in terms of the kernel.

0	x_{12}	x_{13}	0	0	x_{16}	0
x_{21}	0	x_{23}	0	x_{25}	0	0
x_{31}	x_{32}	0	x_{34}	0	0	0
0	0	x_{43}	x_{44}	0	0	x_{47}
0	x_{52}	0	0	x_{55}	0	x_{57}

Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$
Rigid Line Structures

Close

Quit

Whiteley's Idea

Start with the matrix of a regular hypergraph where

 $|E| \le |V| - 2.$

The matrix with generic entries has a three dimensional kernel.

Scale the columns so there is a row of 1's (alters the matrix, but not its rank properties)

Since each row is supported by 3 columns, the original (generic) entries can be expressed in terms of the kernel.

$$\begin{bmatrix} 0 & x_{12} & x_{13} & 0 & 0 & x_{16} & 0 \end{bmatrix}$$
$$\begin{bmatrix} 0 & \begin{vmatrix} x_3 & x_6 \\ 1 & 1 \end{vmatrix} - \begin{vmatrix} x_2 & x_6 \\ 1 & 1 \end{vmatrix} \begin{vmatrix} 0 & 0 & \begin{vmatrix} x_2 & x_3 \\ 1 & 1 \end{vmatrix} = 0$$

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$
Rigid Line Structures

Title Page	
•• ••	
• •	
Page <mark>9</mark> of <mark>29</mark>	
Go Back	

Close

Quit

	0	$\left \begin{array}{cc} x_3 & x_6 \\ 1 & 1 \end{array}\right $	$-\left \begin{array}{cc} x_2 & x_6 \\ 1 & 1 \end{array}\right $	0	0	$\left \begin{array}{cc} x_2 & x_3 \\ 1 & 1 \end{array}\right $	0
n n	$\left \begin{array}{c c} x_3 & x_5 \\ 1 & 1 \end{array}\right $	0	$-\left \begin{array}{cc}x_1 & x_5\\1 & 1\end{array}\right $	0	$\left \begin{array}{cc} x_1 & x_3 \\ 1 & 1 \end{array}\right $	0	0
res	$\left \begin{array}{ccc} x_2 & x_4 \\ 1 & 1 \end{array}\right $	$-\left \begin{array}{cc}x_1 & x_4\\1 & 1\end{array}\right $	0	$\left \begin{array}{cc} x_1 & x_2 \\ 1 & 1 \end{array}\right $	0	0	0
	0	0	$\left \begin{array}{cc} x_4 & x_7 \\ 1 & 1 \end{array}\right $	$- \begin{vmatrix} x_3 & x_7 \\ 1 & 1 \end{vmatrix}$	0	0	$\left \begin{array}{ccc} x_3 & x_4 \\ 1 & 1 \end{array}\right $
		0	$\left egin{array}{ccc} x_5 & x_7 \ 1 & 1 \end{array} ight $		$-\left \begin{array}{cc}x_3 & x_7\\1 & 1\end{array}\right $	0	$\left \begin{array}{c} x_3 & x_5 \\ 1 & 1 \end{array}\right $

If x_i 's are given, an element of the kernel gives y_i 's such that for every row of the matrix supported by $\{i, j, k\}$, the points $(x_i, y_i), (x_j, y_j)$, and (x_k, y_k) are collinear.

There is a choice of x_i 's so that the matrix entries are generic. \implies there is a choice of x_i 's so that Edmond's Theorem characterizes the independence.

 \implies For any generic x_i 's, Edmond's Theorem characterizes the independence.

Ed Th Wi Jac M Rig

Edmond's Theorem	0	$\left \begin{array}{ccc} x_3 & x_6 \\ 1 & 1 \end{array}\right $	$- \begin{vmatrix} x_2 & x_6 \\ 1 & 1 \end{vmatrix}$	0	0	$\begin{array}{c cc} x_2 & x_3 \\ 1 & 1 \end{array}$	0	
Whiteley's Theorem lackson Jordán $\mathfrak{N}_2(K_{n,m})$	$\left \begin{array}{ccc} x_3 & x_5 \\ 1 & 1 \end{array}\right $	0	$- \left \begin{array}{cc} x_1 & x_5 \\ 1 & 1 \end{array} \right $	0	$\left \begin{array}{cc} x_1 & x_3 \\ 1 & 1 \end{array}\right $	0	0	
Rigid Line Structures	$\begin{vmatrix} x_2 & x_4 \\ 1 & 1 \end{vmatrix}$ -	$\left \begin{array}{ccc} x_1 & x_4 \\ 1 & 1 \end{array}\right $	0	$\left \begin{array}{cc} x_1 & x_2 \\ 1 & 1 \end{array}\right $	0	0	0	
Title Page	0	0	$\left \begin{array}{cc} x_4 & x_7 \\ 1 & 1 \end{array}\right $	$-\left \begin{array}{cc} x_3 & x_7 \\ 1 & 1 \end{array}\right $	0	0	$\left \begin{array}{cc} x_3 & x_4 \\ 1 & 1 \end{array}\right $	
•• ••	0	0	$\left \begin{array}{cc} x_5 & x_7 \\ 1 & 1 \end{array}\right $	0	$- \begin{vmatrix} x_3 & x_7 \\ 1 & 1 \end{vmatrix}$	0	$\left \begin{array}{ccc} x_3 & x_5 \\ 1 & 1 \end{array}\right $	
•	There is	s a $2 \dim$	ensional sp	pace of triv	rial lifts.			

For the Fano Plane we conclude that generically choosing the x-coordinates of a drawing, there is no non-trivial way to chose the y coordinates to represent 5 of the seven lines.

(We know a fifth and sixth line can be represented, but not generically.)

Page 10 of 29

Go Back

Full Screen

Close

Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$
Rigid Line Structures

Home Page
Title Page
•• ••
• •
Page 11 of 29
Go Back

Full Screen

Close

2. The *k*-plane matroids

Given: A Hypergraph: (A, B; I)The *k*-plane matroid on *I* has has independent sets $I' \subseteq I$ defined via:

For all $I'' \subseteq I'$, we have

 $|I''| \le |A(I'')| + k|B(I'')| - k$

Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$
Rigid Line Structures

Go Back

Full Screen

Close

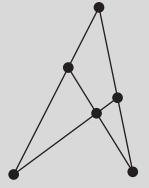
The 2-plane matroids

Given: A Hypergraph: (A, B; I)The 2-plane matroid on I has has independent sets $I' \subseteq I$ defined via:

For all $I'' \subseteq I'$, we have

 $|I''| \le |A(I'')| + 2|B(I'')| - 2$

A: The linesB: the pointsI the incidence relation



Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$
Rigid Line Structures

Go Back

Full Screen

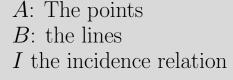
Close

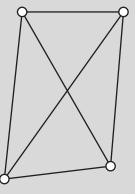
The 2-plane matroids

Given: A Hypergraph: (A, B; I)The 2-plane matroid on I has has independent sets $I' \subseteq I$ defined via:

For all $I'' \subseteq I'$, we have

 $|I''| \le |A(I'')| + 2|B(I'')| - 2$





Edmond's Theorem The k-plane... Whiteley's Theorem Jackson Jordán... $\mathfrak{M}_2(K_{n,m})$ Rigid Line Structures

Page **14** of **29**

Go Back

Full Screen

Close

Quit

3. Whiteley's Theorem

Given an incidence graph G = (B, J; I) the following are equivalent:

(i) G has a realization as an independent (isostatic) identified body and joint framework in the plane.
(ii) G satisfies

$$2i \le 3b + 2j - 3(=)$$

and, for every subset of bodies and induced subgraph of attached joints,

 $2i' \le 3b' + 2j' - 3.$

(iii) G has an independent (isostatic) realization as an identified body and joint framework in the plane such that each body has all its joints collinear.

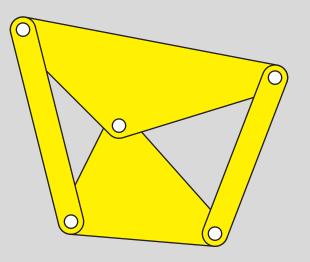
Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$
Rigid Line Structures

Home Page
Home Page
Title Page
44
•
Page 15 of 29
Go Back
Full Screen

Close

The Problems

1. Characterizing Rigidity of Body and Pin Frameworks cannot be done by searching for isostatic sub-frameworks.

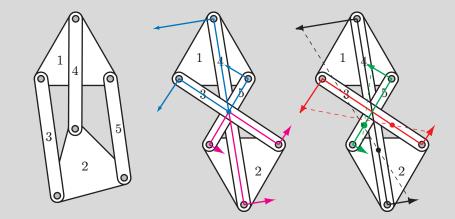


Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$

Rigid Line Structures

The Problems

 Characterizing Rigidity of Body and Pin Frameworks cannot be done by searching for isostatic sub-frameworks.
 Adding pins generically may decrease the degree of freedom by 2, 1 or 0.



Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$
Rigid Line Structures

Title Page

Page 17 of 29

Go Back

Full Screen

Close

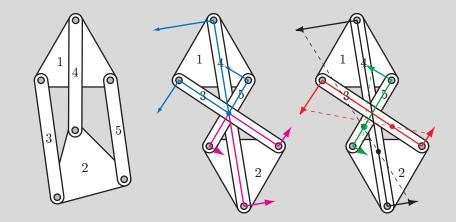
••

The Problems

1. Characterizing Rigidity of Body and Pin Frameworks cannot be done by searching for isostatic sub-frameworks.

2. Adding pins genericly my increase the degree of freedom by 2 or 0.

3. None of this handles the case of pining multiple bodies with one pin.



Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$
Rigid Line Structures

Home Page
Title Page
•• ••
•
Page 18 of 29

Go Back

Full Screen

Close

Quit

4. Jackson Jordán Theorem

Let G be a multigraph. Then G has an infinitesimally rigid pincollinear body-and-pin realization if and only if 2G contains three edge-disjoint spanning trees.

(In other words the incidence count predicted by Whiteley via Edmonds)

Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$
Rigid Line Structures

Title Page

5. $\mathfrak{M}_2(K_{n,m})$

Page **19** of **29**

Go Back

Full Screen

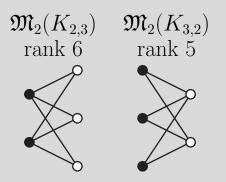
Close

Quit

Question: What are the bases

Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$
Rigid Line Structures

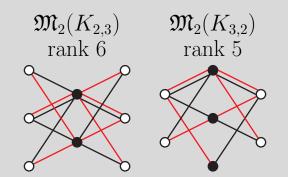
Examples:



Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$
Rigid Line Structures

Examples:

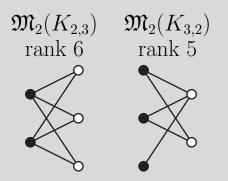
Home Page	
Title Page	
•• ••	
Page 21 of 29	
Go Back	
Full Screen	
Close	
Quit	



●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

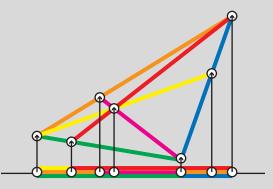
Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$
Rigid Line Structures

Examples:



Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$
Rigid Line Structures

6. Rigid Line Structures



Theorem

Page 23 of 29

Go Back

Full Screen

Close

If the 2-plane matroid of an incidence structure has rank a + 2b-2, then placing a points on any line in the plane with generic x-coordinates and joining them appropriately with b rigid bars gives a structure which is infinitesimally rigid in the plane.

Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$
Rigid Line Structures

Title Page

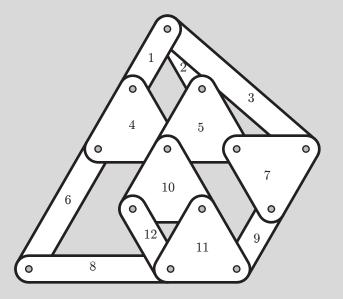
◀

Page 24 of 29

Go Back

Full Screen

Close



Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$
Rigid Line Structures

Title Page

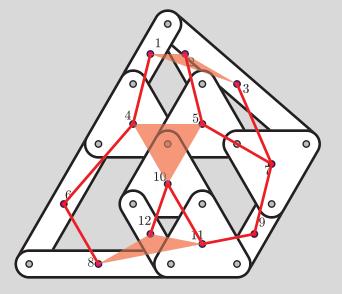
◀

Page 25 of 29

Go Back

Full Screen

Close



Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$
Rigid Line Structures

Title Page

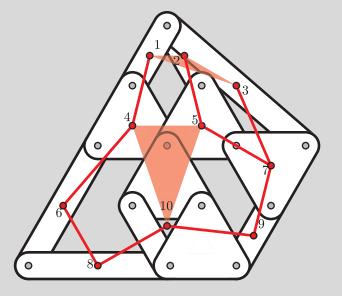
▲ ▶

Page <mark>26</mark> of <mark>29</mark>

Go Back

Full Screen

Close



Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$
Rigid Line Structures

Title Page

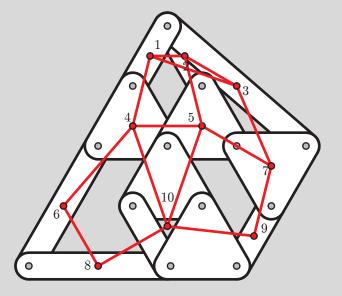
.

Page 27 of 29

Go Back

Full Screen

Close



Edmond's Theorem The k-plane... Whiteley's Theorem Jackson Jordán... $\mathfrak{M}_2(K_{n,m})$ Rigid Line Structures

Home Page

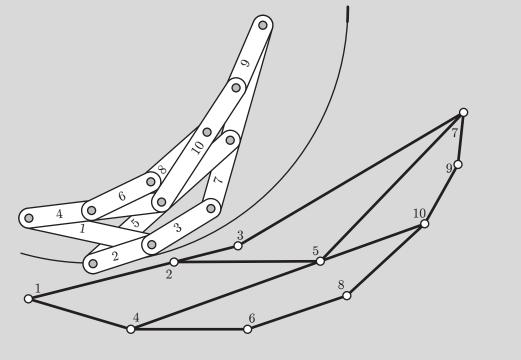
Title Page

Page 28 of 29

Go Back

Full Screen

Close



Edmond's Theorem The k-plane... Whiteley's Theorem Jackson Jordán... $\mathfrak{M}_2(K_{n,m})$ Rigid Line Structures

Home Page Title Page

Page 29 of 29

Go Back

Full Screen

Close

