
Gapfilling for the Symmetric Genus

Thomas W. Tucker (joint with Marston Conder)



The Genus of a Group

Various ideas for genus of a group A. It is the smallest g such
that:

I (White 1972: genus γ(A)) A Cayley graph embeds in the
surface of genus g

I (TWT 1982: symmetric genus σ(A)) A Cayley graph embeds
symmetrically in the surface of genus g (action of A on
C (A,X ) extends to surface)

I (TWT 1982: strong symmetric genus σo(A)) A Cayley graph
embeds strongly symmetrically (action extends preserving
orientation)

I (Burnside et al, 1895) acts preserving orientation with
quotient the sphere
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Genus Gaps

There are various genus gaps: surfaces which fail to have some
sort of symmetry;

I (Breda, Nedela, Siran 2005) There are no regular maps of
nonorientable genus p + 2 where p ≡ 1 mod 12

I (Conder, Siran, TWT 2009) There are no regular maps
without multiple edges in primal or dual of genus p + 1 where
p 6≡ 1 mod 8, 10.

I (ibid) There are no chiral regular maps of genus p + 1 where
p 6≡ 1 mod 6, 8, 10

Question
Are there gaps for γ, σ, σo?
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Strong Symmetric Genus

For strong symmetric genus, there are no gaps:

Theorem
(May and Zimmerman 2002) The family of groups Dm × Zn fills all
gaps for σo .

But all these groups have σ = 1, so not useful for symmetric genus.
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Riemann-Hurwitz

If G acts on suface S preserving orientation with quotient surface
S/G of genus g ′, then

2g − 2 = |G |((2g ′ − 2 + Σ(1/ri − 1))

where branch points have orders r1, r2, · · · .

Special case with three branch points and g ′ = 0 occurs all the
time with factor (1− 1/p − 1/q − 1/r).
If acts not preserving orientation, it is basically the same but with
|G |/2 instead of |G | and branch points are of two forms
(depending on whether locally Dr or Zr ). Most common case is
again g ′ = 0 and three branch points corresponding to generating
set u, v where u2 = 1, vp = 1, [u, v ]r = 1.
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Symmetric genus: gapfilling for odd genus

Let
G4,4,4k = 〈x , y : x4 = y4 = 1, [x2, y ] = [x , y2] = 1, (xy)2k = x2〉.

Theorem
σ(G4,4,4k) = 1 + 8k(1− 2/4− 1/(4k)) = 4k − 1.

Let G4,4,2k = 〈x , y : x4 = y4 = 1, [x2, y ] = [x , y2] = 1, (xy)2k = 1〉.

Theorem
σ(G4,4,4k) = 1 + 8k(1− 2/4− 1/(2k)) = 4k − 3.

Idea of proofs:We have G/〈x2, y2〉 ∼= D2k . The only involutions are
x2, y2, x2y2 for the first group and in addition (xy)k for the second
group. In the first case, this means there are no reflections, since
all involutions are squares and cannot reverse orientation, so only
need to compare {r , s, t} generating sets with {4, 4, 4k}. Second
case, also must consider a reflective action with reflection (xy)k , so
a few more details.
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Genus g ≡ 0, 6, 12 mod 18

Let G2,3k,3k = 〈x , y : x2 = y3k = (xy)3k = 1, [x , y3] = 1〉.

Theorem
For odd k, σ(G2,3k,3k) = 1 + 6k(1− 1/2− 2/(3k)) = 3k − 3.

Idea of Proof: We have G/〈y3〉 ∼= A4, so |G | = 12k. The
abelianization is Z3k so no subgroup of index two, so no
orientation-reversing actions. Also, any {2, s, t} generating set
must have s = t = 3k .
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Genus g ≡ 4, 10, 16 mod 18

Theorem
For odd k 6= 3, 9, σ(Zk × S4) = 1 + 6k(0− 1/2) = 3k + 1.

Idea of proof: The group has order 24k . There is a reflective
action with quotient S/G0 the torus using the generating set
x = (1, (12)(34)), y = (0, (12)), z = (0, (13)) with y , z the
reflections. Notice the S4 coordinates of x , y , z generate S4 and
since k is odd 〈x〉 contains both (0, (12)(34)) and (1, ). Note also
that x and yz are in the index two subgroup Zk × A4. Also
[x , y ] = 1 and [x , z ] = (0, (24)(13)). The quotient graph in the
torus has two vertices and two faces: [x , y ] and [x , z ] so one
branch point of order 1/2.
Best orientation-preserving action in sphere is 2, k, 2k giving

g = 1+12k(1−1/2−1/k−1/(2k)) = 6k−17 ≤ 3k +1 for k > 5.

For k = 5, the orders are at least 2k, 2k and it works. Reflective
actions are more trouble and also allow k = 9.
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Genus g ≡ 10 mod 18

The missing cases for k = 3, 9 above are handled by

Theorem
σ(Zk × Zk × Z3k) = 18k − 8.

Idea of proof: |G | = 27k and the obvious 3, 3, 3k , 3k generating
set gives

2g − 2 = 27k(2− 2/3− 2/(3k)) so g = 1 + 18k − 9.

When k is odd, there are no index two subgroups and we’re done.
For k even, since only involution is (0, 0, 3k/2), we will need at
least 6 branch points off the reflection circle, at least two of order
3k/2, so

2g − 2 ≥ (27k/2)(4− 4/3− 4/(3k)) so again g ≥ 1 + 18k − 9.



Genus g ≡ 10 mod 18

The missing cases for k = 3, 9 above are handled by

Theorem
σ(Zk × Zk × Z3k) = 18k − 8.

Idea of proof: |G | = 27k and the obvious 3, 3, 3k , 3k generating
set gives

2g − 2 = 27k(2− 2/3− 2/(3k)) so g = 1 + 18k − 9.

When k is odd, there are no index two subgroups and we’re done.
For k even, since only involution is (0, 0, 3k/2), we will need at
least 6 branch points off the reflection circle, at least two of order
3k/2, so

2g − 2 ≥ (27k/2)(4− 4/3− 4/(3k)) so again g ≥ 1 + 18k − 9.



Genus g ≡ 2 mod 18

Let G2,3k,[4] be defined by

〈x , y : x2 = y3k = [x , y ]4 = 1, with y3, [x , y ]2 central〉.

Theorem
For odd k, σ(G2,3k,[4]) = 1 + 12k(1− 1/4− 2/(3k)) = 9k − 7.

Dividing about by the central 〈y3, [x , y ]2〉, which has order 2k we
get a standard presentation for S4, so |G | = 48k . The given
presentation gives a reflective action with g = 9k − 7. The
abelianization is Z6k so |G ′| = 8. Since G ′ is generated by
conjugates of [x , y ], we must have G ′ is the quaternions. Thus
[u, v ] has order 4 for any two-element generating set u, v , so there
is no better reflective action. Orientation-preserving actions
eliminated the usual way using G/G ′ ∼= Z6k .
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The Belolipetsky-Jones maps

The BJ maps are balanced, regular {6, 6} Cayley maps for Z2 × Zp

based on a nontrivial root of r3 ≡ −1 mod p when p ≡ 1 mod 6.
They can be generalized to Z2 × Zn where n is odd and all primes
p dividing n satisfy p ≡ 1 mod 6 (use Chinese Remainder and
standard elementary number theory mod pe). It will not work
otherwise, since what you really want is r2 − r + 1 ≡ 0 mod n and
that is impossible mod p when p = 5 mod 6 (need −3 a square
mod p). Note, the Euler charactestic is (2n − 6n + 2n) = −2n so
genus is n + 1.

But the matrix A = (0− 1|11) does satisfy A2 − A + I = 0 so you
can do a BJ regular Cayley map over Zm × Zm. Thus suppose that
k = nm2, where m, n are odd and all primes dividing n are 1 mod
6. Then

Theorem
There is a Z6 split extension G of Z2 × Zn × Zm × Zm, coming
from a BJ-type regular map such that σ(G ) = k + 1.
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Remaining gaps to fill

We have filled all gaps except for the g satisfying these two
properties:

I g ≡ 8, 14 mod 18

I In the unique prime power factorization of g − 1, there is a
prime p ≡ 1 mod 6 whose exponent is odd

Example: take any two primes p, q with p ≡ q ≡ 5 mod 6 and
pq 6≡ 1 mod 18. For example, 5.17 + 1, 5.23 + 1, 11.17 + 1, · · · .
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Gapfilling for White genus

You can do the Pisanski-White partchwork contruction to get an
all quadrilateral embedding for a Cayley graph for Z2m × Z2mn × Z2

of genus 1 + 4m2n(−1 + 5/2− 5/4) = 1 + m2n

With m = 2, this gives all g ≡ 1 mod 4, but also gives all g such
that g − 1 is a multiple of a square but also does g ≡ 1 mod 9 etc.
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