Gapfilling for the Symmetric Genus
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Various ideas for genus of a group A. It is the smallest g such
that:

» (White 1972: genus (A)) A Cayley graph embeds in the
surface of genus g

» (TWT 1982: symmetric genus o(A)) A Cayley graph embeds
symmetrically in the surface of genus g (action of A on
C(A, X) extends to surface)

» (TWT 1982: strong symmetric genus 0°(A)) A Cayley graph
embeds strongly symmetrically (action extends preserving
orientation)

> (Burnside et al, 1895) acts preserving orientation with
quotient the sphere
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Genus Gaps

There are various genus gaps: surfaces which fail to have some
sort of symmetry;

» (Breda, Nedela, Siran 2005) There are no regular maps of
nonorientable genus p + 2 where p = 1 mod 12

» (Conder, Siran, TWT 2009) There are no regular maps
without multiple edges in primal or dual of genus p + 1 where
p #Z 1 mod 8, 10.

» (ibid) There are no chiral regular maps of genus p + 1 where
pZ% 1 mod 6,8,10

Question
Are there gaps for v,0,0°7
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Strong Symmetric Genus

For strong symmetric genus, there are no gaps:

Theorem
(May and Zimmerman 2002) The family of groups Dy, x Z, fills all
gaps for o°.

But all these groups have o = 1, so not useful for symmetric genus.
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Riemann-Hurwitz

If G acts on suface S preserving orientation with quotient surface
S/G of genus g’, then

2g =2 =16G|((28' =2+ x(1/ri = 1))

where branch points have orders ry, rp, - - -.

Special case with three branch points and g’ = 0 occurs all the
time with factor (1 —1/p—1/qg —1/r).

If acts not preserving orientation, it is basically the same but with
|G|/2 instead of |G| and branch points are of two forms
(depending on whether locally D, or Z,). Most common case is
again g’ = 0 and three branch points corresponding to generating
set u, v where u?> =1,vP =1,[u,v]" = 1.
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Let
Gagan = (X, y: xb =yt =1, [X2,y] = [X,y2] =1, (Xy)2k = X2>.

Theorem
o(Gaaax) = 1+ 8k(1 — 2/4 — 1/(4k)) = 4k — 1.
Let Gaaok = (x,y 1 x* = y* = 1% y] = [x,y?] = 1, (xy)* = 1).
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Symmetric genus: gapfilling for odd genus

Let

G4,4,4k = <X’y : X4 :}/4 = 17 [quy] = [X7y2] = L(Xy)zk :X2>'
Theorem

0(Gaaak) =1+8k(1—2/4—1/(4k)) =4k — 1.

Let G4,4,2k = <X7y : X4 = y4 = 17[X27y] = [Xayz] = 17(Xy)2k = 1>

Theorem

0(Gaaak) =1+8k(1—2/4—1/(2k)) =4k — 3.

Idea of proofs:We have G/(x?,y?) = D,,. The only involutions are
x2,y?, x%y? for the first group and in addition (xy)* for the second
group. In the first case, this means there are no reflections, since
all involutions are squares and cannot reverse orientation, so only
need to compare {r,s, t} generating sets with {4,4,4k}. Second
case, also must consider a reflective action with reflection (xy), so
a few more details.
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Let Gosk 3k = (X, : x2 =y = (xy)3 =1,[x,y%] = 1).
Theorem

For odd k, 0(Gp 3k 3k) =1+ 6k(1—1/2—2/(3k)) =3k — 3.
Idea of Proof: We have G/(y3) = Ay, so |G| = 12k. The
abelianization is Z3, so no subgroup of index two, so no
orientation-reversing actions. Also, any {2, s, t} generating set
must have s = t = 3k.
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x =(1,(12)(34)),y = (0,(12)),z = (0,(13)) with y, z the
reflections. Notice the S; coordinates of x, y, z generate S4 and
since k is odd (x) contains both (0, (12)(34)) and (1,). Note also
that x and yz are in the index two subgroup Zx x A4. Also
[x,y] =1 and [x,z] = (0,(24)(13)). The quotient graph in the
torus has two vertices and two faces: [x,y] and [x, z] so one
branch point of order 1/2.
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Theorem

For odd k # 3,9, 0(Zx x S4) =1+ 6k(0 —1/2) =3k + 1.
Idea of proof: The group has order 24k. There is a reflective
action with quotient S/ Gg the torus using the generating set

x =(1,(12)(34)),y = (0,(12)),z = (0,(13)) with y, z the
reflections. Notice the S; coordinates of x, y, z generate S4 and
since k is odd (x) contains both (0, (12)(34)) and (1,). Note also
that x and yz are in the index two subgroup Zx x A4. Also
[x,y] =1 and [x,z] = (0,(24)(13)). The quotient graph in the
torus has two vertices and two faces: [x,y] and [x, z] so one
branch point of order 1/2.

Best orientation-preserving action in sphere is 2, k, 2k giving

g=1+12k(1-1/2—1/k—1/(2k)) = 6k—17 < 3k+1 for k > 5.

For k =5, the orders are at least 2k, 2k and it works. Reflective
actions are more trouble and also allow k = 9.
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Theorem
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Genus g = 10 mod 18

The missing cases for k = 3,9 above are handled by

Theorem

U(Zk X Zk X Z3k) = 18k — 8.

Idea of proof: |G| =27k and the obvious 3,3, 3k, 3k generating
set gives

2g —2=2Tk(2—2/3—2/(3k)) so g =1+ 18k — 9.

When k is odd, there are no index two subgroups and we're done.
For k even, since only involution is (0,0, 3k/2), we will need at
least 6 branch points off the reflection circle, at least two of order
3k/2, so

2g —2 > (27k/2)(4 —4/3 — 4/(3k)) so again g > 1+ 18k — 9.



Genus g =2 mod 18

Let Gy 3,4 be defined by

(x,y x> =y = [x,y]* = 1, with y3, [, y]? central).



Genus g =2 mod 18

Let Gy 3,4 be defined by

(x,y x> =y = [x,y]* = 1, with y3, [, y]? central).

Theorem
For odd k, 0(62’3,(7[4]) =1+12k(1—-1/4—-2/(3k)) =9k —T7.



Genus g =2 mod 18
Let Gy 3,4 be defined by

(x,y x> =y = [x,y]* = 1, with y3, [, y]? central).

Theorem

For odd k, (G 3k ,a)) = 1 + 12k(1 —1/4 —2/(3k)) = 9k — 7.
Dividing about by the central (y3, [x, y]?), which has order 2k we
get a standard presentation for S, so |G| = 48k. The given
presentation gives a reflective action with g =9k — 7. The
abelianization is Zgx so |G'| = 8. Since G’ is generated by
conjugates of [x, y], we must have G’ is the quaternions. Thus

[u, v] has order 4 for any two-element generating set u, v, so there
is no better reflective action. Orientation-preserving actions
eliminated the usual way using G/G’" = Z.



The Belolipetsky-Jones maps

The BJ maps are balanced, regular {6,6} Cayley maps for Z, x Z,
based on a nontrivial root of r3 = —1 mod p when p =1 mod 6.
They can be generalized to Z» x Z, where n is odd and all primes
p dividing n satisfy p = 1 mod 6 (use Chinese Remainder and
standard elementary number theory mod p¢). It will not work
otherwise, since what you really want is r> — r + 1 = 0 mod n and
that is impossible mod p when p =5 mod 6 (need —3 a square
mod p). Note, the Euler charactestic is (2n — 6n+ 2n) = —2n so
genus is n+ 1.
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The Belolipetsky-Jones maps

The BJ maps are balanced, regular {6,6} Cayley maps for Z, x Z,
based on a nontrivial root of r3 = —1 mod p when p =1 mod 6.
They can be generalized to Z» x Z, where n is odd and all primes
p dividing n satisfy p = 1 mod 6 (use Chinese Remainder and
standard elementary number theory mod p¢). It will not work
otherwise, since what you really want is r> — r + 1 = 0 mod n and
that is impossible mod p when p =5 mod 6 (need —3 a square
mod p). Note, the Euler charactestic is (2n — 6n+ 2n) = —2n so
genus is n+ 1.

But the matrix A = (0 — 1|11) does satisfy A2 — A+ / = 0 so you
can do a BJ regular Cayley map over Z,, X Zp,. Thus suppose that
k = nm?, where m, n are odd and all primes dividing n are 1 mod
6. Then

Theorem
There is a Zg split extension G of Zy X Zy X Zm X Zm, coming
from a BJ-type regular map such that o(G) = k + 1.



Remaining gaps to fill

We have filled all gaps except for the g satisfying these two
properties:

» g =8,14 mod 18



Remaining gaps to fill

We have filled all gaps except for the g satisfying these two
properties:
» g =8,14 mod 18
» In the unique prime power factorization of g — 1, there is a
prime p = 1 mod 6 whose exponent is odd



Remaining gaps to fill

We have filled all gaps except for the g satisfying these two
properties:
» g =8,14 mod 18
» In the unique prime power factorization of g — 1, there is a
prime p = 1 mod 6 whose exponent is odd

Example: take any two primes p, g with p =g =5 mod 6 and
pq # 1 mod 18. For example, 5.17 4+ 1,5.23 +1,11.17 +1,---.



Remaining gaps to fill

We have filled all gaps except for the g satisfying these two
properties:
» g =8,14 mod 18
» In the unique prime power factorization of g — 1, there is a
prime p = 1 mod 6 whose exponent is odd

Example: take any two primes p, g with p =g =5 mod 6 and
pq # 1 mod 18. For example, 5.17 4+ 1,5.23 +1,11.17 +1,---.



Gapfilling for White genus

You can do the Pisanski-White partchwork contruction to get an
all quadrilateral embedding for a Cayley graph for Zo;, X Zomn X 2>
of genus 1 +4m?n(—1+5/2 —5/4) =1+ m?n



Gapfilling for White genus

You can do the Pisanski-White partchwork contruction to get an
all quadrilateral embedding for a Cayley graph for Zo;, X Zomn X 2>
of genus 1 +4m?n(—1+5/2 —5/4) =1+ m?n

With m = 2, this gives all g =1 mod 4, but also gives all g such
that g — 1 is a multiple of a square but also does g =1 mod 9 etc.



