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1 Introduction

Our aim today1 is to take a particular class of closed 3-dimensional manifolds,

explain why they all have a decomposition into geometric pieces, and give some

conditions which help determine what the geometries of these pieces are.

The existence of the decomposition follows from a result of William Thurston

known as the Symmetry Theorem. To apply this, we have to show the existence

of an involution - a 2-fold symmetry - on the manifolds in question.

We are dealing with three main issues: topology, geometry and symmetry.

These correspond to three theorems or statements that we will discuss: the

Dehn-Lickorish representation of surface homeomorphisms, the 3-manifold ge-

ometrization conjecture, and Thurston’s Symmetry Theorem. We will use these

three to deduce our main result, which is

Theorem 1 (Genus two 3-manifolds are geometrizable)

Every closed, orientable manifold with a Heegaard splitting of genus two (or

less) has a geometric decomposition.

The three results we will use are:

Theorem (Dehn-Lickorish, attempted proof 1910, proved 1962)

Any homeomorphism h : F → F of a compact, orientable surface F , which is the

identity on ∂F or orientation-preserving if ∂F = ∅, is isotopic to a composition

of Dehn twists.

Conjecture (Thurston, 1976)

Does every compact orientable 3-manifold have a geometric decomposition?

Theorem (Thurston, 1982)

Suppose that M is a closed, orientable, irreducible 3-manifold which admits

an action by a finite group G of orientation-preserving diffeomorphisms such

that some non-trivial element has a fixed point set of dimension one. Then M

admits a geometric decomposition preserved by the group action.

1These notes were originally put together for a postgraduate seminar at Oxford University

in November 2002. This version dates from May 2004.
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2 Topology : Heegaard genus

2.1 Basic definitions

A manifold is said to be closed if it is compact and has empty boundary, and

orientable if it has an atlas of charts whose transition maps are orientation-

preserving. We will always consider our manifolds to be compact and orientable,

and normally they will also be closed.

Every compact 3-manifold possesses a unique smooth structure and a unique

piecewise linear structure, so that any two 3-manifolds are homeomorphic if

and only if they are diffeomorphic; such a manifold may also be finitely tri-

angulated by tetrahedra. A thickened neighbourhood of the 1-skeleton of a

triangulation and its complement form a decomposition of the manifold into

two solid thickened graphs, separated by a surface.

This shows that every closed orientable 3-manifold has a Heegaard splitting of

some finite genus g; namely that there exists a closed, orientable surface of

genus g which separates the manifold into two solid handlebodies, each with

g holes. For a given manifold M , the minimum value of g is known as the

Heegaard genus of M .

The value of the Heegaard genus is unknown for most 3-manifolds M . There

is a complete classification of those of genus 0 or 1, and we will show that

genus 2 manifolds must behave well, but after that not much is known. The

classifications for low genus are as follows.

Proposition 2 (Genus zero splittings)

If a 3-manifold M has a splitting of genus zero, it is homeomorphic to S3.

For, if we glue together two solid balls by an orientation-reversing homeomor-

phism along their boundary, the gluing map is isotopic to the identity; this

gives a homeomorphism to S3. Recall that an isotopy is a homotopy for which

every section of its image is a homeomorphism.

Proposition 3 (Genus one splittings)

If a 3-manifold M has a splitting of genus one, it is either homeomorphic to a

lens space or to S1 × S2.

A lens space Lp,q is a 3-manifold formed as a quotient of S3 (considered as the

unit sphere of C2) by the cyclic group Zp of isometries generated by (z1, z2) 7→

(e2πi/pz1, e
2πiq/pz2) for coprime integers p and q. The splitting of genus one has
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Heegaard surface |z1|
2 = |z2|

2 = 1

2
and divides Lp,q into two solid tori given by

|z1|
2 ≤ 1

2
and |z1|

2 ≥ 1

2
.

The genus one splitting of S1 × S2 is even easier to see: take two solid tori and

glue them by the identity map along their boundaries (reversing the orientation

of one of the handlebodies). Analysis of all possible torus gluing maps shows

that the manifolds listed are the only ones with genus one splittings.

A genus two splitting, for example, is defined by the images of the boundaries

of a complete set of meridian discs under the gluing map, as shown.

h

a

h(a) h(b)

b

Figure 1: Defining a genus two splitting

More background concerning 3-manifolds and Heegaard splittings may be found

in books of Hempel [7], Stillwell [13] and Thurston [14], and also in an excellent

survey paper of Martin Scharlemann [10].

2.2 The Weierstrass involution τ and Dehn twists

Let F2 be the closed, orientable surface of genus 2, standardly embedded in

R3. Then, taking an axis of rotation as shown, the Weierstrass involution τ is

represented by a rotation of angle π about this axis. Thus τ is an isometry of

order two.

π

Figure 2: The Weierstrass involution τ

Note that this involution may be defined for a surface of any genus. However,

it can only be extended to an arbitrary Heegaard splitting if the genus is at

most two.
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We also need to define a Dehn twist about a simple closed curve.

Definition 4

Let t : Fg → Fg be a homeomorphism from a surface Fg to itself. Then

we say that t is a Dehn twist about a if t is isotopic to a homeomorphism t′

such that there exists a simple non-separating closed curve a and an annular

neighbourhood Nε(a) of a with t′ the identity on Fg \ Nε(a) and t′ acting as a

twist of 2π of one component of ∂Nε(a) relative to the other.

Dehn twist

Figure 3: Dehn twist about a simple closed curve

2.3 Extending the involution to genus 2 manifolds

It is easy to see that τ extends to a homeomorphism of a handlebody which

is contained as the bounded component of the complement of the standardly

embedded surface F2 in R3. What is hard is to show that τ extends across the

other handlebody, glued by some arbitrary homeomorphism h of F2. To show

this, we need the following result.

Proposition 5 (up to isotopy, τ commutes with h)

Any diffeomorphism h : F2 → F2 is isotopic to h′ : F2 → F2 such that τh′ =

h′τ . Equivalently, the hyperelliptic involution τ is central in the mapping class

group of F2.

Corollary 6 (τ extends to both handlebodies)

Let M = H1∪F2
H2 be a manifold represented by a Heegaard splitting of genus

2 and with gluing map h. Then τ : F2 → F2 extends to an involution τM of M .

Proof. Changing the gluing homeomorphism of a splitting to an isotopic home-

omorphism does not alter the manifold. Thus, using the proposition, we may

assume that h commutes with τ . We can extend τ to either handlebody Hi by

considering the standard embedding of Hi in R3, symmetrically placed about

the axis of τ , a rotation of π. These extensions agree on the Heegaard surface
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and hence comprise τM . For, if x is a point on ∂H1, and y is its image under h

on ∂H2, we have

τH2
(y) = τM (h(x)) = (τ ◦ h)(x) = (h ◦ τ)(x) = h(τH1

(x))

Thus τ extends to an involution τM on all of M . 2

The proposition may be proven as follows. First we show that τ takes every

simple closed curve on F2 to an isotopic curve (possibly reversing orientation).

This shows that τ commutes with Dehn twists (since orientation is irrelevant

when defining these). We then apply the Dehn-Lickorish theorem to complete

the proof.

Proof of Proposition 5. Fix a hyperbolic structure on F2, and a Fuchsian

group G ≤ PSL(2, R) corresponding to it. We sketch a proof that τ sends

every simple closed geodesic of F2 to itself, possibly reversing orientation. Full

details may be found in a paper of Hass and Susskind [6].

Let γ be an oriented simple closed curve on F2, separating the surface into two

surfaces of genus one with a disc removed, say T1 and T2. Lift to the universal

cover H2, choosing a connected component γ̃ of the preimage of γ and similarly

the lifts T̃1 and T̃2 adjacent to γ̃.

Let g be a generator for the stabilizer of γ̃ in G. It can be shown that there is a

transformation h with h2 = g, which projects to a conformal involution on each

of T1 and T2 separately, and hence on F2. For, if we cut Ti open along a simple

closed curve α disjoint from γ, there exists an involution of Ti swapping the

copies of α and preserving γ: its preimage in H2 is the Möbius transformation

of order two with fixed point the midpoint of the common perpendicular to

chosen lifts of the images of α.

T1

lift of α

lift of α

lift of γ

Figure 4: The elliptic Möbius transformation of order two
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Moreover, this involution has three fixed points on each of T1 and T2, and so

is the unique hyperelliptic involution on F2, i.e. the order two conformal auto-

morphism fixing 6 points. The involution preserves α and γ by construction.

In particular, since the involution constructed is unique, it is independent of our

choice of dividing curve γ, and so preserves every such dividing geodesic curve.

In addition, if α is any non-separating simple closed curve, we can choose a

dividing curve γ ′ disjoint from it, and apply the construction to show that the

involution also preserves α.

Since every isotopy class contains a geodesic, τ sends every simple closed curve

to an isotopic curve. Thus τ commutes with all Dehn twists. To complete

the proof of the proposition, we now turn to the first of our theorems: the

Dehn-Lickorish theorem.

2.4 The Dehn-Lickorish Theorem

Theorem 7 (Dehn-Lickorish, attempted proof 1910, proved 1962))

Any homeomorphism h : F → F of a compact, orientable surface F , which is the

identity on ∂F or orientation-preserving if ∂F = ∅, is isotopic to a composition

of Dehn twists.

Proof. Write ta to denote the Dehn twist about a simple closed curve a on F .

Note that t−1
a is also a Dehn twist.

Suppose that α and β are non-separating simple closed curves on F . Consider

α∩β. If this contains a single point, the composition ta ◦ tb sends α (via αβ) to

β. If it is empty, we can find a third non-separating simple closed curve γ such

that γ intersects each of α and β in a single point, ensuring that there exists

a composition of Dehn twists (and homeomorphisms isotopic to the identity)

under which α is sent to β (via γ).

If |α ∩ β| ≥ 2, we can ensure it is a finite integer by a small isotopy (putting

it into general position) and then use induction on this integer n by finding a

curve γ which intersects α at most once and β at most n − 1 times. Thus we

again find a composition of Dehn twists and identity-isotopic homeomorphisms

under which α is sent to β.

Now consider a complete set of meridian discs for F , say m1, . . . ,mg. Since m1

and h(m1) are non-separating simple closed curves on F , the above argument

shows that there exists a homeomorphism f1 : F → F taking h(m1) to m1,

such that f1 is a composition of Dehn twists and homeomorphisms isotopic to

the identity.
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We may assume that the orientations of f1(h(m1)) and m1 coincide, for if

not then we may take a curve β intersecting m1 in exactly one point, so that

(tβ ◦ tm1
◦ tβ)2 takes m1 to m−1

1
, and modify f1 by this composition of Dehn

twists.

We may also assume that f1 ◦ h is the identity on m1, since there exists some

map isotopic to f1 with this property. Cut F along m1 to get some new bounded

surface F1. Then, since the orientations of f1(h(m1)) and m1 coincide, f1 ◦ h is

the identity on ∂F1.

Repeating for all the meridian discs, we obtain a homeomorphism φ = fg ◦

. . . ◦ f1 ◦ h of the disc Fg with g holes, acting as the identity on ∂Fg. But the

group of homeomorphisms of Fg is isomorphic to the group of isotopy classes

of thickened braids, hence generated by the generators of the pure braid group

and a primitive twist around each braid, as shown.

Dehn twist

Figure 5: A generator of the pure braid group

Each of these generators corresponds to a Dehn twist about some simple closed

curve in Fg. Therefore φ is a composition of Dehn twists and homeomorphisms

isotopic to the identity. Since each fi is also of this form, so is our original

homeomorphism h. 2

We may now conclude the proof of Proposition 5. Take an arbitrary diffeo-

morphism h : F2 → F2. Since τ commutes with every Dehn twist, and by the

Dehn-Lickorish Theorem h is isotopic to a composition of Dehn twists h′, we

have τh′ = h′τ as required. 2
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3 Geometry : geometrization of 3-manifolds

3.1 Geometric decomposition

Let M be a compact orientable 3-manifold. An essential 2-sphere in M is an

embedded copy of S2 which does not bound a ball D3 in M . Kneser showed

(1929) that M has a unique prime decomposition into manifolds with no essen-

tial 2-spheres and copies of S1 × S2. This prime decomposition is obtained by

cutting along a maximal collection of disjoint embedded 2-spheres.

Manifolds with no essential 2-spheres are said to be irreducible; S1 × S2 is the

only reducible prime 3-manifold. If M has a prime decomposition into manifolds

M1, . . . ,Mn, we say that M is the connected sum of these manifolds and write

M = M1#M2# . . . #Mn.

In the late 1970s, Jaco-Shalen and Johannson published details of a similar

canonical decomposition along essential tori (and annuli), known as the JSJ-

decomposition. Background material describing this decomposition may be

found in a survey paper of Neumann and Swarup [9].

If we apply both of these decompositions to M we will get a number of pieces,

each of which will be irreducible and atoroidal - plus perhaps some pieces of

the form S1 ×S2. We say that M has a geometric decomposition if we can put

a complete geometric structure on each of these pieces.

3.2 The eight three-dimensional geometries

In two dimensions there are three possible geometries: simply connected mani-

folds from which we may create a compact quotient surface corresponding to

a discrete subgroup of the isometry group. These are the constant curvature

geometries S2, E2 and H2. By the complex analysis Uniformization Theorem

of the nineteenth century, every complete geometric structure is formed as a

discrete quotient of one of these constant curvature manifolds.

In three dimensions it makes sense to widen the notion of geometry to include

simply connected 3-manifolds which have a homogeneous but not necessarily

isotropic Riemannian metric. That is, the metric looks the same at every point

but not necessarily the same in every direction from that point.

Thurston showed that there are precisely eight such model geometries in three

dimensions which may be exhibited by a compact 3-manifold.
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Of these, three geometries are constant curvature: S3, E3 and H3. Two are

direct products: S2 × E1, H2 × E1. The remaining three are twisted prod-

ucts, known as nilgeometry, S̃L2(R) and solvegeometry. Peter Scott’s 1983

paper [11] gives further details about the properties and behaviour of these

three-dimensional geometries.

It turns out that six of these geometries only occur in 3-manifolds known as

Seifert fibre spaces, classified by Herbert Seifert in 1933 [12]. These manifolds

are mostly well understood: for our purposes they can be thought of as circle

bundles over an orbifold, a surface with finitely many rational singular points.

The remaining geometries are solvegeometry and hyperbolic geometry. The

former is modelled only by 3-manifolds possessing a foliation by tori, which

is again quite a restrictive condition. Thus the latter is the most common

geometry: most geometric 3-manifolds are hyperbolic.

3.3 Thurston’s geometrization conjecture

From this conclusion William Thurston made a further conjecture: that every

3-manifold which could have a complete hyperbolic structure, should have one.

In particular, every irreducible atoroidal 3-manifold with infinite fundamental

group should be a discrete compact quotient of H3. In terms of a geometric

decomposition as described above, his conjecture reduces to the following.

Conjecture 8 (Thurston’s Geometrization Conjecture)

Every compact, orientable 3-manifold has a geometric decomposition.

This is known to hold for various classes of 3-manifolds, the most important

being those with an incompressible surface (in which every loop bounding a disc

in the ambient manifold bounds one in the surface), known as Haken manifolds.

This approach proceeds by a delicate induction on a hierarchy obtained by

repeatedly splitting a Haken manifold along an incompressible surface until

a collection of disjoint 3-balls is obtained. A summary of the proof by John

Morgan may be found in [8].

The conjecture naturally splits up into three cases: where the fundamental

group is finite, where it is infinite and contains a Z×Z subgroup, and where it

is infinite but does not contain such a subgroup.

The first case subsumes the Poincaré conjecture: any closed, simply-connected

3-manifold is homeomorphic to S3; it is still open. The second case has been

resolved in the last few years: any such manifold either contains an essential

torus (and hence splits further) or is a Seifert fibre space (and hence possesses
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a SFS geometry). The third case is still open: it needs to be shown that all

such manifolds are hyperbolic.

4 Symmetry : using the Orbifold Theorem

4.1 Thurston’s Symmetry Theorem

Let us see if we can relate Heegaard splittings, the Weierstrass involution and

geometrization. The Heegaard surface is certainly not incompressible, and we

cannot use the techniques used for Haken manifolds to obtain a proof of ge-

ometrization by induction. It is the existence of the involution that will guide

us to an approach.

The key is the third of our theorems, the Symmetry Theorem. This is actually

a special case of a much stronger and important theorem known as the Orbifold

Theorem, claimed by Thurston in 1981 and versions of which have been given

proofs only recently. The major work has been done by two separate groups:

see either [4] for the Cooper-Hodgson-Kerckhoff approach or [1], [2] and [3] for

the work of Boileau-Leeb-Porti. The proofs are long, technical and in any case

well beyond the scope of our discussion.

We restate the particular case we are interested in.

Theorem 9 (Thurston’s Symmetry Theorem)

Suppose that M is a closed, orientable, irreducible 3-manifold which admits

an action by a finite group G of orientation-preserving diffeomorphisms such

that some non-trivial element has a fixed point set of dimension one. Then M

admits a geometric decomposition preserved by the group action.

4.2 Application to irreducible genus two manifolds

We now have all the results needed to apply this theorem. We showed that

the Weierstrass half-revolution involution τ of a genus two surface extends to

an involution of any manifold M with a Heegaard splitting of genus two. The

involution generates a group of finite order two, and is a non-trivial element of

that group.

Its fixed point set consists of three arcs in each handlebody, linking up (after

isotopy) to give three linked circles in the manifold. This is one-dimensional

and so M satisfies the conditions of the group action. We know that M is closed
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and orientable; if it is also irreducible, we may apply the Symmetry Theorem

to deduce that it has a geometric decomposition.

π

Figure 6: Sample fixed point set of τ

Therefore every irreducible 3-manifold with Heegaard genus two is geometriz-

able in the sense of Thurston’s geometrization conjecture.

4.3 Genus two manifolds: the reducible case

We may also deal directly with the easier case of reducible genus two manifolds,

as follows. A reducible manifold is either S1 × S2 or it contains an essential

2-sphere S. Since S1 × S2 has geometry modelled on S2 × E1, we restrict our

attention to the latter case.

Let M be a reducible manifold of Heegaard genus two. A result of Haken [5]

shows that there is a choice of essential 2-sphere S so that it intersects the

Heegaard surface in a single circle and each handlebody in an essential disc. If

M has a separating 2-sphere then S can also be chosen to be separating.

If this sphere S separates M into two disjoint pieces, it must then also sepa-

rate each handlebody into two solid tori. Thus M is a connected sum of two

manifolds as shown, each with a Heegaard splitting of genus one.

If M contains no separating essential 2-sphere, it must contain a non-separating

one. In particular it must have a S1×S2 summand in its prime decomposition,

which we remove. Then M = M1#(S1 × S2) for some manifold M1. But the

sphere may be assumed to bisect a 1-handle in each handlebody of the genus

two splitting for M , and thus M1 has a genus one Heegaard splitting.

In particular, any reducible manifold M with a Heegaard splitting of genus two

is expressible as the connected sum of two manifolds with Heegaard splittings

of genus one. These are all geometric: S1 × S2 is modelled on S2 × E1, and all

lens spaces are modelled on S3. Thus M has a geometric decomposition.



REFERENCES 13

separating sphere

genus one manifolds

Figure 7: Obtaining splittings of genus one

Putting this with the results of the previous section, we deduce Theorem 1:

every closed, orientable 3-manifold with a Heegaard splitting of genus two has

a geometric decomposition.
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